I-65/I-70 North Split Project Indianapolis, Indiana

Des. Nos. 1592385 and 1600808

TRAFFIC NOISE TECHNICAL REPORT

September 24, 2019

CONTENTS

EX	ECUTIVE SUMMARYS
1	INTRODUCTION1
2	LEGISLATION AND NOISE FUNDAMENTALS 1 2.1 Regulatory Requirements 1
	2.2 Traffic Noise
3	IMPACT CRITERIA
	3.1 Noise Abatement Criteria
	3.2 INDOT Definition of Noise Impacts
4	NOISE STUDY METHODOLOGY
	4.1 Identification of Land Uses
	4.2 Common Noise Environments (CNE) Descriptions
	4.3 Receptors for Non-Residential Land Uses7
	4.4 Determination of Existing Noise Levels11
	4.5 Traffic Noise Model12
	4.6 Model Validation
5	NOISE MODELING14
6	NOISE IMPACTS AND ABATEMENT14
	6.1 Noise Impact Assessment14
	6.2 Noise Abatement Measures15
7	RESULTS FOR HISTORIC PROPERTIES
8	CONSTRUCTION NOISE
9	PUBLIC INVOLVEMENT
10	STATEMENT OF LIKELIHOOD
11	CONCLUSION

FIGURES

Figure 1: North Split Location	2
Figure 2: Construction Equipment Sound Levels	20

TABLES

Table 1: FHWA Noise Abatement Criteria	5
Table 2: Measured Existing Noise Levels	12
Table 3: Measured and Modeled Noise	13
Table 4: Category D Noise Levels	15
Table 5: Noise Barrier Summary	17
Table 6: Historic Resource Noise Results	18

APPENDICES

- Appendix A: Traffic Noise Analysis Maps
- Appendix B: Noise Measurement Data Sheets
- Appendix C: Certificates of Calibration
- Appendix D: Predicted Noise Levels
- Appendix E: Noise Barrier Analysis Results
- Appendix F: Noise Barrier Design Summary
- Appendix G: Public Involvement Materials (utilized in Final Traffic Noise Analysis)

EXECUTIVE SUMMARY

This report evaluates the potential noise impacts of the proposed improvements within the I-65/I-70 North Split Interchange (North Split) in Indianapolis, Indiana in conformance with corresponding federal regulations and guidance and the National Environmental Policy Act (NEPA). The noise analysis presents the existing and future acoustical environment at various receptors located along I-65 and I-70 within the study area.

The determination of noise abatement measures and locations is in compliance with the Federal Highway Administration (FHWA) Procedures for Abatement of Highway Traffic Noise and Construction Noise as presented in the Code of Federal Regulations, Title 23 Part 772 (23 CFR 772) and the Indiana Department of Transportation (INDOT) Traffic Noise Analysis Procedure, last updated in 2017.

Existing noise level measurements were taken at eight representative locations. A 20-minute measurement was taken at each site. The measurements were made in accordance with FHWA and INDOT guidelines using an integrating sound level analyzer meeting American National Standard Institute and International Electro Technical Commission Type 1 specifications. Traffic counts and vehicle classification were collected concurrently with the noise measurement.

The latest version of the INDOT traffic noise model (TNM) was used to model existing (2017) and design year (2041) worst hourly traffic noise levels within the study area. A total of 378 TNM noise receivers representing 898 noise-sensitive receptors, numbered R1 through R455, were modeled for the existing and proposed condition. These receivers were selected to model representative noise impacts at 763 Activity Category B receptors, 68 Category C receptors, 56 Category D receptors, and 11 Category E receptors. The location of each receiver is shown on the maps in **Appendix A** of this report.

Based on the studies completed to date, INDOT has identified those noise receptors that would be exposed to 2041 design year noise levels approaching or exceeding the FHWA Noise Abatement Criteria (NAC) of 67 dB(A) Leq(h). Predicted future design year (2041) noise levels adjacent to the proposed project would approach or exceed the NAC at 81 receiver locations representing 209 receptors. The noise levels at these 209 receptors would range from 66.3 to 73.8 dB(A) Leq(h). Substantial noise level increases, defined by the INDOT Traffic Noise Analysis Procedure as 15.0 dB(A) or greater, are not projected to occur within the study area.

Eight noise barrier locations (most with multiple acoustical designs) were modeled in the study area. The noise barrier designs ranged from 600 to 4,734 feet in length with average heights ranging from 11 to 20 feet and ranged in cost from \$204,060 to \$2,711,670. The cost per benefited receptor for the analyzed barriers ranged from \$9,681 to \$288,653. Noise abatement at these locations is based upon preliminary estimated costs and design criteria.

Based on the studies completed to date, INDOT has identified 209 impacted receptors and has determined that noise abatement is likely, but not guaranteed, at four locations. Noise abatement at these locations is based upon preliminary design costs and design criteria. Noise abatement in these locations at this time has been estimated to cost \$690,930, \$1,273,470, \$1,006,860, and \$2,711,670 and will reduce the noise level by a minimum of 7 dB(A) at a majority of the identified impacted receptors. A re-evaluation of the noise analysis will occur during final design. If during final design it has been determined that conditions have changed such that noise abatement is not feasible and reasonable, the abatement measures might not be provided.

The final decision on the installation of any abatement measure(s) will be made upon the completion of the project's final design and the public involvement processes. The viewpoints of the benefited residents and property owners will be sought and considered in determining the reasonableness of highway traffic noise abatement measures for proposed highway construction projects. INDOT will incorporate highway traffic noise consideration in ongoing activities for public involvement in the highway program.

1 INTRODUCTION

The Indiana Department of Transportation (INDOT) is developing a project involving the I-65/I-70 North Split Interchange (North Split) in Indianapolis, Indiana, in partnership with the Federal Highway Administration (FHWA). I-65 and I-70 are nationally significant corridors, serving the Midwest and United States in four directions. The North Split is the second-most heavily-traveled interchange in Indiana, accommodating about 214,000 vehicles per day.¹ The purpose of the North Split Project is to rehabilitate and improve existing interstate facilities in the project area. The location of the North Split interchange in the downtown Indianapolis interstate system is shown in **Figure 1**.

2 LEGISLATION AND NOISE FUNDAMENTALS

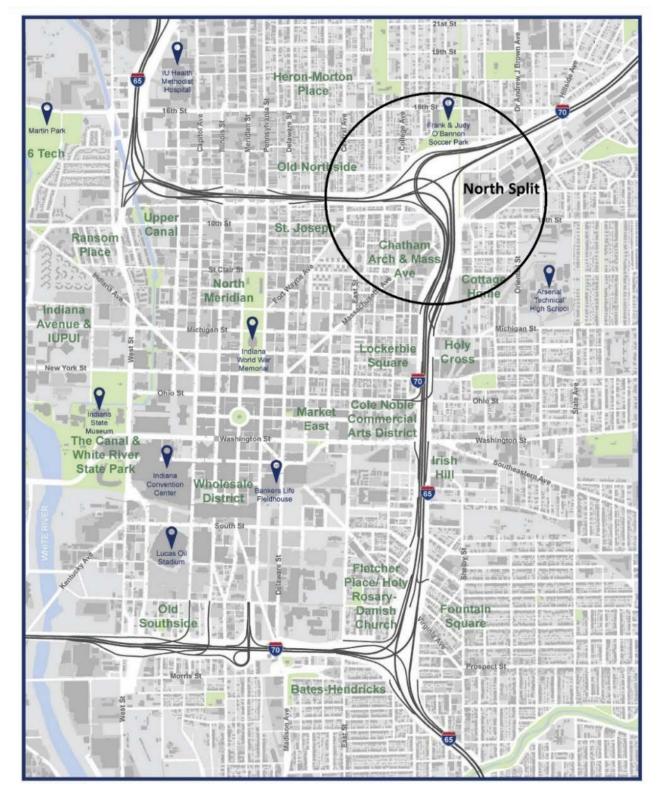
2.1 Regulatory Requirements

Effective control of undesirable traffic noise focuses upon three types of action. These are the control of land uses adjacent to a highway, regulation of vehicle noise emission levels, and mitigation of noise impacts resulting from certain types of highway improvement projects.

The authority to implement planning and land use control in the State of Indiana is under the jurisdiction of local governments. Both FHWA and INDOT encourage local governments to regulate land uses in such a manner that noise sensitive developments are either prohibited from being located adjacent to major transportation facilities, or are planned, designed, and built in such a manner that potential noise impacts can be avoided or minimized.

The Noise Control Act of 1972 gave the U.S. Environmental Protection Agency (USEPA) the authority to establish noise regulations to control major noise sources, including motor vehicles and construction equipment. Furthermore, the USEPA was required to set noise emission standards for motor vehicles used for interstate commerce and the FHWA was required to enforce the USEPA noise emission standards through the Office of Motor Carrier Safety.

The National Environmental Policy Act (NEPA) gave broad authority and responsibility to Federal agencies to evaluate and mitigate adverse environmental impacts caused by Federal actions. FHWA is required to comply with NEPA including mitigating adverse highway traffic noise effects. The *Federal-Aid Highway Act of 1970* mandates FHWA to develop standards for mitigating highway traffic noise. It also requires FHWA to establish traffic noise level criteria for various types of land uses. The Act prohibits FHWA approval of federal-aid highway projects unless adequate consideration has been made for noise abatement measures to comply with the standards.


FHWA regulations for highway traffic noise for federal-aid highway projects are contained in 23 CFR Part 772. The regulations contain noise abatement criteria, which represent the maximum acceptable level of highway traffic noise for specific types of land uses. The regulations do not mandate that the abatement criteria be met in all situations, but rather require that reasonable and feasible efforts be made to provide noise mitigation when the abatement criteria are approached or exceeded.

¹ INDOT, 'North Split Reconstruction Project.' Retrieved from <u>https://northsplit.com/</u> 5/30/2019.

Figure 1: North Split Location

The traffic noise standards and the description of highway traffic noise prediction requirements, noise analyses, noise abatement criteria, and requirements for informing local officials are found in 23 CFR Part 772. (Procedures for Abatement of Highway Traffic Noise and Construction Noise). Also, FHWA policy requires each state Department of Transportation to adopt a state-specific noise policy, approved by FHWA, which defines specific terms and describes how the state implements the noise standard.

The effective date of the most recent FHWA-approved *INDOT Traffic Noise Analysis Procedure* is July 1, 2017. This policy is applicable to Type I federal-aid highway projects which involve the construction of a highway on a new location or the physical alteration of an existing highway that significantly changes either its horizontal or vertical alignment or increases the number of through traffic lanes. The structure of the policy focuses on the following principal elements:

- Identification of Noise-Sensitive Land Uses.
- Determination of Existing Noise Levels.
- Prediction of Future Noise Levels.
- Identification of Traffic Noise Impacts.
- Identification and Consideration of Abatement.
- Consideration of Construction Noise.
- Coordination with Local Government Officials.

2.2 Traffic Noise

Noise is generally defined as unwanted sound. Airborne sound occurs by a rapid fluctuation of air pressure above and below atmospheric pressure. Sound pressure levels are usually measured and expressed in decibels (dB). The decibel scale is logarithmic and expresses the ratio of the sound pressure unit being measured to a standard reference level.

Most sounds occurring in the environment do not consist of a single frequency, but rather a broad band of differing frequencies. Because the human ear does not respond to all frequencies equally, the method commonly used to quantify environmental noise is to apply an adjustment, or weighting, to define the relative loudness of different frequencies. The A-weighted scale is widely used because it best approximates the frequency response of the human ear. The A-weighted sound level in decibels is identified as dB(A).

Although the dB(A) may adequately indicate the level of environmental noise at any instant in time, community noise levels vary continuously. Most environmental noise includes a conglomeration of noise from distant sources, creating a relatively steady background noise in which no particular source is identifiable. To describe the time-varying character of traffic noise, a statistical noise descriptor called the equivalent hourly sound level, or Leq(h), is commonly used. Leq(h) describes a noise sensitive receptor's cumulative exposure from all noise-producing events over a one-hour period.

Because decibels are logarithmic units, sound levels cannot be added by ordinary arithmetic means. The following general relationships provide a basic understanding of sound generation and propagation:

- An increase, or decrease, of 10 dB will be perceived by the human ear to be a doubling, or halving (respectively), of the sound level.
- Doubling the traffic volumes, keeping vehicle mix and speeds the same, and not changing the distance between the source and a receiver will increase the traffic noise level by 3 dB, which will be perceived as a barely noticeable change in outdoor settings.

3 IMPACT CRITERIA

3.1 Noise Abatement Criteria

The *INDOT Traffic Noise Analysis Procedure* has adopted the noise abatement criteria (NAC) that have been established by FHWA (23 CFR Part 772)² for determining noise impacts for a variety of land uses. The land-use Activity Categories along with the criteria are presented in **Table 1**. The NAC sound levels are only to be used to determine a roadway noise impact. These are the absolute values where abatement must be considered.

3.2 INDOT Definition of Noise Impacts

Traffic noise impacts occur if either of the following two conditions is met:

- The predicted traffic noise levels approach or exceed the NAC, as shown in **Table 1**. The *INDOT Traffic Noise Analysis Procedure* defines "approach or exceed" as meaning that future levels are higher than 1 dB(A) below the appropriate NAC activity category. For example, for a category B receptor, 66 dB(A) is approaching 67 dB(A) and would be considered an impact.
- The predicted traffic noise levels substantially exceed the existing noise level. The INDOT Traffic Noise Analysis Procedure defines "substantially exceed" as meaning when predicted traffic noise levels exceed existing noise levels by 15 dB(A) or more. For example, if a receptor's existing noise level is 50 dB(A), and if the future noise level is 65 dB(A), then it would be considered an impact.

² 23 C.F.R. § 772 (2010). "Procedures for Abatement of Highway Traffic noise and Construction Noise." Accessed June, 3, 2019.

Table 1: FHWA Noise Abatement Criteria

	Hourly A-Weighted Sound Level - Decibels (dB(A))								
Category	Criteria ¹ Leq(h)	Evaluation Location	Description of Activity						
A	57	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.						
B ²	67	Exterior	Residential						
с	67	Exterior	Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of w orship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.						
D	52	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.						
E	72	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties, or activities not included in A-D or F.						
F	-	-	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.						
G	-	-	Undeveloped lands that are not permitted.						

Leq(h) Activity Criteria are only for impact determination and are not design standards for noise abatement measures.
 Includes undeveloped lands permitted for this activity category.

Source: Federal Highway Administration (23 CFR Part 772, Table 1).

4 NOISE STUDY METHODOLOGY

4.1 Identification of Land Uses

The project is located in downtown Indianapolis which consists primarily of single and multifamily residences (NAC Category B), schools, places of worship, and recreational facilities (NAC Category C), offices, motels, and restaurants (NAC Category E); and retail, and industrial properties (NAC Category F), as well as non-sensitive industrial and commercial land uses (NAC Category F). All receivers are within 500 feet from the preferred alternative (edge of the outside travel lane). The entire area is fully developed with very few vacant, undeveloped properties.

The study area contains several National Register of Historic Places (National Register)-listed and National Register-eligible historic districts and properties. Historic properties within 800 feet of the proposed edge of pavement were included in the TNM model for only informational purposes to support the Section 106 process. Since the TNM model does not accurately predict noise levels beyond 800 feet from the noise source, 800 feet was the limit of this evaluation. These historic districts include the Old Northside, Chatham-Arch, the Saint Joseph Neighborhood, Lockerbie Square, Holy Cross/Westminster, and the Windsor Park Neighborhood Historic District. Historic properties include the Bals-Wocher House, the Wyndham building, the Pierson-Griffiths House, the Calvin I. Fletcher House, the Cole Motor Car Company building, the Gasteria Inc. building, the Manchester Apartments, the Sheffield Inn , the Delaware Court Apartments, the William Buschman Block building, the Morris-Butler House, the Pearson Terrace building, the Benjamin Harrison Home/Presidential Site, John Hope School # 26, and Saints

Peter and Paul Cathedral. Based on the noise abatement criteria set in 23 Code of Federal Regulations (CFR) 772³, 11 of these properties have exterior areas of frequent human use and are therefore considered noise sensitive (see Table 1). Additional discussion on these properties is included in **Section 7** of this report.

Within the study area, the Monon Trail parallels Lewis Street before stopping at 10th Street. The Monon Trail crosses under the North Split interchange extending more than 20 miles north with direct access to many parks and recreational facilities. The O'Bannon soccer fields, connecting directly to the Monon Trail, are located on the north edge of the interchange. The property encompasses approximately 17 acres of open space. Land use along the south leg of the interchange is predominantly industrial and residential.

The northern terminus of the Indianapolis Cultural Trail is within the study area at 10th street. The Cultural Trail provides direct access to arts and cultural districts as well as parks and recreational facilities downtown.

4.2 Common Noise Environments (CNE) Descriptions

Land uses in the project area have been grouped into a series of numbered Common Noise Environments (CNE) that are identified on maps in **Appendix A**.

• CNE 1 is located on the east side of I-65/I-70 on the south leg of the interchange between the CSX railroad at the southern end of the project and approximately North Street. This area consists of industrial, commercial, and residential land uses. The residential land use includes the Holy Cross/Westminster neighborhood. This area is generally flat. No sound barrier or topographical shielding occurs between the highway and the residential areas.

• **CNE 2** is located on the east side of I-65/I-70 on the south leg of the interchange between North Street and 13th Street. Residential land uses (Activity Category B) include the Cottage Home neighborhood. The Monon Trail and the Legacy Learning Center are also located in this area. This area is generally flat. No areas of frequent human outdoor use were identified for the commercial land uses. There are no topographical shielding factors between the residences and the highway.

• **CNE 3** is located south of I-70 on the east leg of the interchange between approximately Columbia Street and the eastern limits of the study area. This area consists primarily of industrial land use with a small residential area centered on Dr. Andrew J. Brown Avenue and a small portion of the Windsor Park neighborhood. This area is generally flat. No areas of frequent human outdoor use were identified for the commercial land uses. There are no topographical shielding factors between the residences and the highway.

• **CNE 4** is located north of I-70 on the east leg of the interchange from the eastern limits of the study area to Lewis Street. This area consists of a few commercial/industrial properties and residential land uses, along with several churches and the Oaks Academy School. No areas of frequent outdoor human use were identified for the commercial properties. Residential land uses include the Martindale Brightwood neighborhood. There are no topographical shielding factors between the highway and sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

• **CNE 5** is located north of the interchange and on the northbound side of I-65 west of the interchange. This area consists of a commercial, residential, and recreational properties. Residential land uses include the Old Northside neighborhood. Recreational properties include the Monon Trail and the O'Bannon soccer fields. There are no topographical shielding factors between the highway sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

• **CNE 6** is located in the southwest quadrant of the interchange and on the southbound side of I-65 from the westem extent of the study area to approximately 10th Street. This area consists of a few commercial properties and residences. Residential land uses include the Chatham Arch neighborhood. There are no topographical shielding factors between the highway sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

• **CNE 7** is located on the southbound/westbound side of I-65/I-70 west of the south leg of the interchange from 10^h Street south to St. Clair Street. This area consists of a few commercial properties and a large multi-story apartment building. There are no topographical shielding factors between the highway sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

• **CNE 8** is located on the southbound/westbound side of I-65/I-70 west of the south leg of the interchange from St. Clair Street to Vermont Street. This area consists of a few commercial properties and residences. Residential land uses include several large multi-story apartment complexes and individual homes. There are no topographical shielding factors between the highway sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

• **CNE 9** is located on the southbound/westbound side of I-65/I-70 west of the south leg on the interchange from Vermont Street to the Ohio Street exit ramp and the southern extent of the study area. This area consists of a few commercial and institutional properties and residences. Residential land uses include a group of residences south of New York Street and west of Davidson Street. There are no topographical shielding factors between the highway sensitive land uses. This area contains several building rows providing shielding to sensitive land uses further from the roadway.

4.3 Receptors for Non-Residential Land Uses

As stated in **Section 4.1**, non-residential land uses in the study area with noise sensitive land uses consist of schools, non-profit institutions, and recreational facilities. Under most situations, a single structure is considered a single receptor. Structures that contain multiple residential units (e.g. hotels, apartments) are considered to have one receptor per residential unit. For certain land uses (parks, trails, etc.), a separate algorithm (shown below) is used to translate usage data into an appropriate number of receptors, based on converting total usage to equivalent residential units. To determine the number of receptors appropriate for the Monon Trail/Indianapolis Cultural Trail, O'Bannon soccer fields, Benjamin Harrison Home/Presidential Site, the Legacy Learning Center, and the Oaks Academy, a slightly modified version of the algorithm provided in the *INDOT Traffic Noise Analysis Procedure* was used. This algorithm converts total usage to equivalent receptors. An explanation of how the number of receptors was determined for each property is provided below.

Monon Trail/Indianapolis Cultural Trail

The Monon Trail and Indianapolis Cultural Trail (Cultural Trail) are multi-use trails that run roughly north/south through the study area. The southern terminus of the Monon Trail is just east of the I-65/I-70 overpass over 10th Street. For the purposes of this evaluation the segment of the Cultural Trail from 10th Street to approximately Carrollton Avenue was considered an extension of the Monon Trail and assumed to have approximately the same number of users. Approximately 3,500 feet of the Monon Trail/Cultural Trail is within a 500-foot buffer of the proposed edge of pavement for the North Split Project. A total of six receivers, R455, R120-1, R120-2, R120-3, R120-5, and R120-6 were placed at equal distances along the trails.

The total length of the trail segment for which counts were provided is approximately 5.7 miles (30,000 feet). This segment extended from Northview Drive to 10th Street. The annual usage of this trail segment is 99,764.⁴ The number of annual users (99,764) was divided by 365 (days per year) to get 273 average daily users. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(273 users per day/2.52 people on average per family) X (3,500 feet of trail within the study area/30,000 feet of trail within the segment) = 13 receptors.

The 13 receptors calculated above were divided between the six receiver locations (two receptors per receiver) within the study area with the extra receptor being assigned to the trail segment representing the Cultural Trail.

⁴ City of Indianapolis Greenways Development Committee Files, 2016 via e-mail "Re: indy Greenways Trail Counts" from Ron Taylor, Chair of the Indianapolis Greenways Development Committee

O'Bannon Soccer Fields

The O'Bannon Soccer Fields is approximately 17 acres of soccer fields bordered by 16th Street to the north, the North Split Interchange to the south, the Monon Trail to the east and Bundy Place to the west. These fields host soccer leagues from Spring to Fall and serve as a trailhead and parking for the Monon Trail. These fields are represented in the model by receivers R121 and R122. An estimate of average daily number of users, based on the number of fields, assumed number of users per field, and assumed number of users of the Monon Trail access, was determined to be 200. Based on the usage of the fields, approximately 10 hours per day and 7 days per week for 9 months of the year a usage factor of 0.24 was calculated for this facility. Multiplying the usage factor (0.24) by the estimated daily number of users (200) gives an average daily number of users of 48. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(48 visitors per day/2.52 average people per household) X (61% of the property within the study area) = 12 receptors.

These 12 receptors were divided evenly between R121 and R122.

Benjamin Harrison Home/Presidential Site

The Benjamin Harrison Home/Presidential Site is a National Historic Landmark consisting of a museum, manicured grounds, and gardens in the lawn south of the home. This site is represented in the model by receiver R206. It was determined that this site receives approximately 30,000 annual visitors.⁵ The following algorithm was used to calculate the appropriate number of receptors per receiver.

(82 visitors per day/2.52 average people per household) X (100% of the property within the study area) =33 receptors.

These 33 receptors were applied to R206 in the model.

Legacy Learning Center

The Legacy Learning Center is a school located in CNE 2 in the southeast quadrant of the North Split interchange. This site is represented in the model by receiver R113. It was determined that this school has a combined 270 staff and students on an average day.⁶ Based on the occupation of this building approximately 10 hours per day and 5 days per week for 9 months of the year a usage factor of 0.22 was calculated for this facility. Multiplying the usage factor (0.22) by the total faculty, staff and students (270) gives an average daily number of users of 59. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(59 visitors per day/2.52 average people per household) X (50% of the property within the study area) =12 receptors.

These 12 receptors were applied to R113 in the model.

The Oaks Academy

The Oaks Academy is a school located in CNE 4 at the intersection of 16th Street and Columbia Avenue. This site is represented in the model by receiver R106A. It was determined that this school has a combined 265 staff and students on an average day.⁷ Based on the occupation of this building approximately 10 hours per day and 5 days per week for 9 months of the year a usage factor of 0.22 was calculated for this facility. Multiplying the usage factor (0.22) by the total faculty, staff and students (265) gives an average daily number of users of 58. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(58 visitors per day/2.52 average people per household) X (100% of the property within the study area) X(50% of faculty and staff using the outdoor areas) = 12 receptors.

These 12 receptors were applied to R106A in the model.

⁵ Hyde, Charles (2019, July 12) Phone call.

⁶ Representative from the Legacy Learning Center (2019, August 7) Phone call.

⁷ Representative from the Oaks Academy (2019, August 1) Phone call.

Foundation of Truth Worship Center

The Foundation of Truth Worship Center is in CNE 3 north of Michigan Street between I-65 and the railroad. This site is represented in the model by receiver R49. It was estimated based on usage number from other worship centers in the area that Foundation of Truth Worship Center has approximately 150 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total visitors, staff and students (150) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(11 visitors per day/2.52 average people per household) X (100% of the property within the study area) =4 receptors.

These 4 receptors were applied to R49 in the model.

Goodwill Missionary Baptist Church

The Goodwill Missionary Baptist Church is located at 1302 Columbia Avenue in CNE 2 in the northwest quadrant of the intersection of Columbia Avenue and 13th Street. This site is represented in the model by receiver R50. It was estimated based on usage number from other worship centers in the area and the size of the building that Goodwill Missionary Baptist Church has approximately 100 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (100) gives an average daily number of users of 7. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(7 visitors per day/2.52 average people per household) X (100% of the property within the study area) =3 receptors.

These 3 receptors were applied to R50 in the model.

Hillside Christian Church

The Hillside Christian Church is located at 1737 Ingram Street in CNE 3 in the southwest quadrant of the intersection of Ingram Street and 18th Street. This site is represented in the model by receiver R86. It was estimated based on usage number from other worship centers in the area and the size of the building that Hillside Christian Church has approximately 150 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (150) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(11 visitors per day/2.52 average people per household) X (100% of the property within the study area) =4 receptors.

These 4 receptors were applied to R86 in the model.

New Bethel Missionary Baptist Church

The New Bethel Missionary Baptist Church is located at 1535 Dr. Andrew Brown Drive in CNE 3 in the southeast quadrant of the intersection of Dr. Andrew Brown Drive and 16th Street. This site is represented in the model by receiver R106. It was determined from a phone call with a representative of the church that New Bethel Missionary Baptist Church has approximately 150 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (150) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(11 visitors per day/2.52 average people per household) X (100% of the property within the study area) =4 receptors.

These 4 receptors were applied to R106 in the model.

Greater Bethlehem Missional Baptist Church

The Greater Bethlehem Missional Baptist Church is located in the southeast corner of Yandes Street and 15th Street within CNE 3. This site is represented in the model by receiver R111. It was estimated based on usage number from other worship centers in the area and the size of the building that Greater Bethlehem Missional Baptist Church has approximately 100 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (100) gives an average daily number of users of 7. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(7 visitors per day/2.52 average people per household) X (100% of the property within the study area) =3 receptors.

These 3 receptors were applied to R111 in the model.

Eastside New Hope Missionary Baptist Church

The Eastside New Hope Missionary Baptist Church is located at 1601 Sheldon Street within CNE 3 in the northeast corner of Sheldon Street and 16th Street. This site is represented in the model by receiver R112. It was estimated based on usage number from other worship centers in the area and the size of the building that Eastside New Hope Missionary Baptist Church has approximately 150 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (150) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(11 visitors per day/2.52 average people per household) X (100% of the property within the study area) =4 receptors.

These 4 receptors were applied to R112 in the model.

Traders Point Christian Church

The Traders Point Christian Church is located at 1201 N. Delaware Street CNE 5. This site is represented in the model by receiver R205 and R 205-1. It was determined in a phone call from a representative from the church that Traders Point Christian Church has approximately 1,100 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (1,100) gives an average daily number of users of 77. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(77 visitors per day/2.52 average people per household) X(100% of the property within the study area) = 31 receptors.

These 31 receptors were divided and applied between R205 (15) and R205-1 (16) in the model.

Allen Chapel AME Church

The Allen Chapel AME Church is located at 637 11th Street within CNE 6 in the southeast corner of 11th Street and Broadway Avenue. This site is represented in the model by receiver R392. It was estimated based on usage number from other worship centers in the area and the size of the building that Allen Chapel AME Church has approximately 150 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (150) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(11 visitors per day/2.52 average people per household) X (100% of the property within the study area) =4 receptors.

These 4 receptors were applied to R392 in the model.

Upper Room Apostolic Church

The Upper Room Apostolic Church is located at 1601 Sheldon Street within CNE 6 in the northeast corner of Sheldon Street and 16th Street. This site is represented in the model by receiver R393. It was estimated based on usage number from other worship centers in the area and the size of the building that Upper Room Apostolic Church has approximately 100 regular attendees on an average Sunday. Based on the occupation of this building approximately 6 hours per day and 2 days per week for 12 months of the year a usage factor of 0.07 was calculated for this facility. Multiplying the usage factor (0.07) by the total assumed visitors (100) gives an average daily number of users of 11. The following algorithm was used to calculate the appropriate number of receptors per receiver.

(7 visitors per day/2.52 average people per household) X (100% of the property within the study area) =3 receptors.

These 3 receptors were applied to R393 in the model.

4.4 Determination of Existing Noise Levels

Existing noise levels are defined in 23 CFR Part 772 as the noise resulting from the natural and mechanical sources and human activity considered to be present in an area during the period of the noise analysis. Existing noise level measurements were collected at eight representative sites within the study area on October 29 and 30, 2018, and November 2 and 5, 2018. **Table 2** lists these sites and identifies the time of data collection and the traffic mix and speed at each location. Measurement sites were selected in residential areas (Activity Category B). The locations were selected to cover various distances, common noise areas, and variations in topography.

These short-term measurements were conducted using a Larson-Davis Model Lxt1 sound level meter (serial number 5625). Measurements were taken over a 20-minute period. Calibration on the meter was checked before and after field work using a Larson-Davis Model Cal 200 (serial number 12852). During the measurements the temperature varied around 48-72 degrees Fahrenheit, and winds were light, having little effect of sound propagation over moderate distances. Temperature, humidity, and winds speeds were within the manufacture's recommended guidelines for operation of the sound level meter.

The noise field measurement sites (FM), FM-01 through FM-08, are presented in **Appendix B** of this report. The measured noise levels at sites FM-01 through FM-08 ranged from 61.6 to 70.4 dB(A) Leq. The field data sheets are presented in **Appendix B** of this report and the sound level analyzer laboratory calibration certificates are presented in **Appendix C** of this report.

Results were used to validate the noise model used in this analysis, the TNM, Version 2.5.

Table 2: Measured Existing Noise Levels

Field	Site	Data Duration						Speed (mph)	Noise Level, dBA			
Site	Description	Date	Time	Duration	Roadway	A ^a	МТ⋼	HT۰	MCd	Busese	Speed (mph)	I _{eq} (1h)
FM 01	Harrison	10/20/19	12.24	20 min	I-65 NB	1,022	41	83	2	9	59	69.4
FINIOT	House Lawn	10/30/18	13:24	20 min	I-65 SB	1,024	35	86	1	10	59	68.4
	Sidewalk				I-65 NB	1,377	26	107	0	15	57	
FM 02	near Morris- Butler House	10/30/18	14:17	20 min	I-65 SB	2,194	51	95	0	2	57	68.7
	O'Bannon				I-70 EB	788	96	124	4	0	62	
FM 03	Soccer Fields	11/2/18	10:29	20 min	I-70 WB	810	6	54	0	0	61	60.9
	A	11/0/10	45.00	00	I-70 EB	2,214	62	140	0	6	61	00.0
FIM 04	Arsenal Ave	11/2/18	15:02	20 min	I-70 WB	1,982	110	158	0	10	60	69.3
EN OF	1102 St.	11/0/10	44.00	00	I-65 NB	622	20	62	0	0	60	00.0
FM 05	Clair Street	11/2/18	11:38	20 min	I-65 SB	1,266	58	114	0	0	60	66.3
	1010 East	44/0/40	40.05	00 ·	I-65/I-70 NB	1,836	36	158	0	0	56	00.4
FM 06	Market	11/2/18	16:35	20 min	I-65/I-70 SB	1,568	48	160	0	0	56	62.1
	420 Fulton	44/5/40	40.57	00	I-65 NB	1,081	45	106	0	85	58	00.0
FM 07	Ave	11/5/18	10:57	20 min	I-65 SB	723	22	112	0	1	58	66.2
	East 11th				I-65 NB	1,121	21	120	1	29	60	
FM 08	Street Unit 323	10/30/18	14:58	20 min	I-65 SB	1,209	40	100	0	22	60	60.4

1) Vehicle counts classified as follows:

a. Autos (A) defined as vehicles with 2 axles and 4 tires.

b. Medium trucks (MT) defined as vehicles with 2 axles and 6 tires.

c. Heavy trucks (HT) defined as vehicles with 3 or more axles.

d. Motorcycle (MC) defined as vehicles with 2 or 3 w heels.

e. Buses defined as vehicles carrying more than 9 passengers.

4.5 Traffic Noise Model

The traffic noise analysis was performed using the INDOT traffic noise model (TNM). The TNM was first released in March 1998. Version 2.5 of the model was released in April 2004 and is the latest approved version.

The TNM estimates vehicle noise emissions based on mean (average) noise emission levels for three classes of vehicles used for this analysis: automobiles, medium trucks, and heavy trucks. The predicted noise levels for the existing and design year build alternative conditions were based on peak hour volumes and vehicular fleet mixes for the years 2017 and 2041.

Terrain and other roadway features were input in to TNM. These inputs include roadway widths (including inner and outer shoulders) and elevations, receptor elevations, intervening terrain, and ground cover (tree zones). In

accordance with the procedure in *INDOT Traffic Noise Analysis Procedure*, all receptors located within 500 feet of the edge of pavement of all reasonable build alternatives were assessed for traffic noise impacts. Additional receptors located at distances up to 600 feet were included in the model as a conservative measure so that sensitive land uses bordering the 500-foot study area would be captured in the evaluation. Receivers representing historic properties and districts were included in the model to support the analysis of the project's effects on historic properties.

Based on this input data, the TNM uses its acoustic algorithms to predict noise levels at receptor locations by considering sound propagation divergence, intervening ground, barriers, building rows, and vegetation.

4.6 Model Validation

Existing noise level measurements were taken at eight representative locations. The measurements were made in accordance with FHWA and INDOT guidelines using an integrating sound level analyzer meeting American National Standard Institute and International Electro Technical Commission Type 1 specifications. Traffic counts and vehicle classification were collected concurrently with the noise measurement. Vehicle classifications include passenger vehicles, medium trucks, heavy trucks, buses, and motorcycles.

Table 3 summarizes the results of the measured and modeled noise levels at the field measurement sites. Since the TNM modeled field data were within \pm 3 dB of the measured noise levels, the model is assumed to be valid for this study. The field measurements and the modeled noise levels, using traffic counts taken during the field noise measurements, are used to validate the noise model. These values do not represent the existing worst (noisiest) hour traffic noise levels used throughout the remainder of the noise analysis. These traffic values were only used for model validation.

	Noise Level, c	Difference	
Field Measurement Site ID	Measured Level	Modeled Level	Dimerence
FM 01	68.4	66.0	2.4
FM 02	68.7	70.4	-1.7
FM 03	60.9	63.1	-2.2
FM 04	69.3	67.6	1.7
FM 05	66.3	63.4	2.9
FM 06	62.1	63.4	-1.3
FM 07	66.2	63.8	2.4
FM 08	60.4	61.6	-1.2

Table 3: Measured and Modeled Noise

5 NOISE MODELING

Based on a combination of land use, traffic volumes, location of cross streets and residential density, the study area was divided into nine common noise environments (CNEs). Traffic data from the traffic simulation model were used as input into TNM to model 2017 (referred to as existing) and 2041 (design year) noise levels throughout the North Split Project study area.

The predicted noise levels for the existing and design year build alternative conditions were based on the worst (noisiest) traffic hour in the years 2017 and 2041. The Design Hourly Volume (DHV) for all existing and proposed roadways was projected above a Level of Service (LOS) D, therefore an equivalent traffic volume that would produce a LOS C was used. Receptors are defined as discrete or representative locations in a noise sensitive area(s). Receivers are defined as points where the noise model calculates the noise level. A receiver in the noise model may represent multiple receptors.

The latest version of the TNM was used to model existing (2017) and design year (2041) worst hourly traffic noise levels within the North Split study area. A total of 378 TNM noise receivers representing 898 receptors, numbered R1 through R455, were modeled for the existing and proposed condition. These receivers were selected to model representative noise impacts at 763 Activity Category B receptors, 68 Category C receptors, 56 Category D receptors, and 11 Category E receptors. The location of each receiver is shown in **Appendix A** of this report. The receivers were modeled five feet above ground for ground level receivers and an additional ten feet was added to each receiver above the second story based on floor (e.g. 25 feet for third story receivers). The modeled noise levels are presented in **Appendix D** of this report.

Activity Category C land uses that do not have an exterior area of frequent human use are categorized as Activity Category D land uses, which are evaluated for interior impacts.

6 NOISE IMPACTS AND ABATEMENT

6.1 Noise Impact Assessment

Existing (2017) worst (noisiest) traffic hour noise levels range from 37.6 to 73.5 dB(A) Leq(h). Worst traffic hour noise levels in the design year (2041) range from 37.3 to 73.8 dB(A) Leq(h). Existing and design year traffic worst hour noise levels are found in **Appendix D** of this report. The locations of the receivers are shown on the traffic analysis noise maps in **Appendix A** of this report.

Predicted future design year (2041) noise levels adjacent to the proposed project would approach or exceed the Noise Abatement Criteria (NAC) at 81 receiver locations representing 209 receptors. The noise levels at these 209 receptors would range from 66.3 to 73.8 dB(A) $L_{eq}(h)$.

Predicted future noise level changes range from a 7 dB(A) decrease to a 3.7 dB(A) increase. Substantial noise level increases, 15.0 dB(A) as defined in **Section 3.2**, are not projected to occur. To evaluate interior noise levels the exterior level was modeled and a reduction factor is applied⁸. A summary of Category D land uses is provided in Table 4 below.

⁸ U.S. Department of Transportation. (1995). Highway Traffic Noise Analysis and Abatement Policy and Guidance. Washington DC: Federal Highway Administration Office of Environmental Planning Noise and Air Quality Branch

Table 4: Category D Noise Levels

Receiver ID	Category D Description	Exterior Noise Level (dBA)	Noise Reduction due to Structural Criteria (dBA)	Interior Noise (dBA)	Interior Criteria (dBA)	Impact
R49	Church	67.5	25	42.5	51	Ν
R50	Church	67.1	25	42.1	51	Ν
R86	Church	74.1	25	49.1	51	Ν
R106	Church	66.6	25	41.6	51	Ν
R111	Church	67.8	25	42.8	51	Ν
R112	Church	65.3	20	45.3	51	Ν
R162-1	Non-profit Institutional	65.9	25	40.9	51	Ν
R205-1	Church	67.4	25	42.4	51	Ν
R392	Church	62.0	25	37.0	51	Ν
R393	Church	57.3	20	37.3	51	Ν

6.2 Noise Abatement Measures

Based on the requirements of 23 CFR 772 and within the framework of the *INDOT Traffic Noise Analysis Procedure*, various methods were reviewed to mitigate the noise impact of the preferred alternative. Among those mitigation options considered were those listed below.

- Restricting truck traffic to specific times of the day.
- Prohibiting truck traffic.
- Altering horizontal and vertical alignments.
- Acquiring property for construction of noise barriers or berms.
- Acquiring property to create buffer zones to prevent development that could be adversely impacted.
- Soundproofing public use or nonprofit institutional buildings in land use Activity Category D only.
- Constructing berms (linear earthen mounds).
- Installing noise barriers (a wall located between the highway and receptors).

Restricting or prohibiting trucks is beyond the scope of this project and would require changes in legislation. Design criteria and recommended termini for the proposed project do not allow for sufficient changes in alignment to provide a noticeable change in the traffic noise levels at the abutting properties. A 15-foot tall earthen noise berm would have a footprint ranging in width from 35 to 95 feet. Therefore, it is neither feasible nor reasonable to construct noise berms within the study area without acquiring substantial amounts of right-of-way. The construction of noise barriers appears to be the most feasible and reasonable method to mitigate noise impact for this project. Abatement is recommended for consideration where it is feasible and reasonable to construct a noise barrier. Soundproofing will be reviewed during final design for Activity Category D land uses that remain above the NAC after the potential feasible and reasonable noise mitigation measures have been finalized.

A noise analysis identifies "where noise abatement is feasible and reasonable, and locations with impacts that have no feasible or reasonable noise abatement alternatives." The most efficient location for a noise barrier is as close to the source or the receiver as possible. Therefore, in the areas of the projected noise impacts noise barriers were modeled five feet inside the right-of-way, at edge of shoulder on top of retaining walls or just outside the clear zone in areas where the mainline or ramps were at a higher elevation than the adjacent receivers.

Noise barriers were modeled at eight locations with TNM for the preferred alternative. These analyzed barriers are described below:

NB1 — Northbound (NB) I-65/Eastbound (EB) I-70 along the edge of shoulder in the southeast quadrant of the interchange. This noise barrier examines abatement of future noise levels at receivers R35 through R113 in CNE 2 (see **Appendix A**, pages 3 and 4).

NB2 — EB I-70 along the edge of the shoulder roughly between Columbia Avenue and North Arsenal Avenue. This noise barrier examines abatement of future noise levels at residential receivers R50 through R55 within CNE 3 (see **Appendix A**, pages 3 and 4).

NB3E — Westbound (WB) I-70 along the edge of shoulder between Commerce Avenue and Valley Avenue. This noise barrier examines abatement of future noise levels at residential receivers R70 through R112 within CNE 4 (see **Appendix A**, pages 4 and 5).

NB3W — WB I-70 along the edge of shoulder between Lewis Street and Commerce Avenue. This noise barrier examines abatement of future noise levels at residential receivers R100 through R110 within CNE 4 (see **Appendix A**, pages 4 and 5).

NB4 — NB I-65 north of the interchange along the edge of shoulder between College Avenue and Alabama Street. This noise barrier examines abatement of future noise levels at residential receivers R143 through R178 within CNE 5 (see **Appendix A**, page 2).

NB5 — Southbound (SB) I-65 south of the interchange along the edge of shoulder between College Avenue and Alabama Street. This noise barrier examines abatement of future noise levels at residential receivers R324 through R398 within CNE 6 (see **Appendix A**, page 2).

NB6 — SB I-65 south of the interchange along the edge of shoulder between Alabama Street to Meridian Street. This noise barrier examines abatement of future noise levels at residential receivers R220 through R342 within CNE 6 (see **Appendix A**, page 2).

NB7 — SB I-65/WB I-70 along edge of shoulder on the west side of the southern leg of the interchange between 10th Street and Ohio Street. This noise barrier examines abatement of future noise levels within CNEs 8 and 9 (see **Appendix A**, pages 6-8).

Factors to be considered in determining noise abatement feasibility, as defined in the *INDOT Traffic Noise Analysis Procedure*, are listed below.

- Acoustic Feasibility: INDOT requires that noise barriers achieve a 5 dB(A) reduction at a majority (greater than 50%) of the impacted receptors.
- Engineering Feasibility: INDOT requires noise abatement measures to be based on sound engineering practices and standards and requires that any measures be evaluated at the optimum location.

Factors to be considered in determining reasonableness, as defined in the INDOT Traffic Noise Analysis Procedure, are listed below.

 Cost Effectiveness: To determine cost effectiveness, the estimated cost of constructing a noise barrier will be divided by the number of benefited receptors (those who would receive a reduction of at least 5 dB(A)). A base material and design cost of \$25,000 to \$30,000 or less per benefited receiver is currently considered to be cost-effective. Development in which a majority (more than 50%) of the receptors was in place prior to the initial construction of the roadway in its current state (functional classification) will receive

additional consideration for noise abatement. The cost-effectiveness criteria used for these cases will be 20% greater (currently \$30,000 per benefited receptor).

- Noise Reduction Design Goal: INDOT's goal for substantial noise reduction is to provide at least a 7.0 dB(A) reduction for impacted first row receptors in the design year.
- Views of Residents and Property Owners: A survey will be mailed to each benefited resident to consider the views of residents and property owners. The concerns and opinions of the property owner and the unit occupants will be balanced with other considerations in determining whether a barrier is appropriate for a given location.

Noise barriers were modeled at eight locations within the study area. The results of the noise barrier analysis are summarized in **Table 5**. The table presents the proposed barrier location or identification number, the CNE area, barrier length, average height, number benefited receptors adjacent to the proposed noise barrier, and a yes or no statement as to whether or not a noise barrier meets INDOT's feasibility criteria, design goal, and cost reasonable criteria as previously defined. The table also presents the estimated cost of the noise barrier based on the TNM calculated area of the noise barrier times a cost of \$30.00/square foot. The cost per benefited receptor is the cost of the noise barrier divided by the number of benefited receptors. Of the eight barriers analyzed four met INDOT's reasonable and feasible criteria. Additional barrier configurations evaluated during the barrier design are shown in **Appendix F**.

Maps showing noise receptors and potential feasible and reasonable noise barrier locations are shown in **Appendix A**. There are four feasible and cost-effective noise barrier locations for the preferred alternative, NB3E, NB4, NB5, and NB7. A structural evaluation of the bridge structure starting at Alabama Street and extending beyond the western limits of the project concluded that it could not safely support the additional load required from installation of a noise barrier. Therefore, NB4 and NB5 were terminated at the Alabama Street overpass, and NB6 was determined to be structurally infeasible.

If pertinent parameters change substantially during the continuing project design, the noise abatement decision may be changed or eliminated from the final project design.

Proposed Barrier Location	CNE Area	Length (feet)	Average Height (feet)	Daaan		Design Goal Met?	Cost of Barrier (@\$30/sq ft)	Cost per Benefited Receptor	Cost- Effective Threshold	Cost- Reasonable Criteria Met
NB1	2	1,925	20	4	Yes	Yes	\$1,154,610	\$288,653	\$25,000	No
NB2	3	600	11	5	Yes	No	\$204,060	\$40,812	\$30,000	No
NB3E	4	1,615	14	35	Yes	Yes	\$690,930	\$19,741	\$30,000	Yes
NB3W	4	1,505	15	20	Yes	Yes	\$655,140	\$32,757	\$30,000	No
NB4	5	2,325	19	58	Yes	Yes	\$1,273,470	\$21,956	\$30,000	Yes
NB5	6	2,001	15	104	Yes	Yes	\$1,006,860	\$9,681	\$25,000	Yes
NB6	6	1,804	13	10	No*	No	\$731,100	\$73,110	\$30,000	No
NB7	7,8,9	4,734	19	166	Yes	Yes	\$2,711,670	\$16,335	\$25,000	Yes

 Table 5: Noise Barrier Summary

*NB6 was determined to not meet the engineering feasibility criteria as a noise wall could not be safely constructed on the structure.

7 RESULTS FOR HISTORIC PROPERTIES

A total of 23 receivers were modeled in the TNM to support the evaluation of the project's effects on aboveground National Register-listed or National Register-eligible properties within the study area. Of these 23 receivers, 11 were within 500 feet of the edge of pavement and, due to their land use, were assigned receptors in accordance with the FHWA guideline. The remaining 12 were either further than 500 feet from the edge of pavement or were not assigned receivers due to their current land use. Three of these properties would experience a reduction in noise levels as a result of barriers likely to be constructed. Results of this analysis are included in **Table 6.**

Table 6: Historic Resource Noise Results

Receiver ID	Historic Resource	Existing dB(A) (2017)	Build dB(A) (2041)	Change	Noise Level w/ Barrier
R2	Holy Cross\Westminster Historic District	65.9	65.0	-0.9	N/A
R24	Cottage Home Historic District	60.2	60.5	0.3	N/A
R106 A	John Hope School No. 26	67.1	66.8	-0.3	N/A
R161 (HP3)	Old Northside Historic District	70.4	66.7	-3.7	60.4
R161 (HP3)	Morris-Butler House	70.4	66.7	-3.7	60.4
R206 (HP4)	Benjamin Harrison Home/ Presidential Site	65.1	63.6	-1.5	N/A
R221 (HP5)	Manchester Apartments	63.1	62.2	-0.9	N/A
R221 (HP5)	Sheffield Inn	63.1	62.2	-0.9	N/A
R222 (HP6)	Calvin I. Fletcher House	69.3	67.7	-1.6	N/A
R223 (HP8)	Wyndham	70.8	68.6	-2.2	N/A
R224 (HP7)	Pierson-Griffiths House	66.3	64.8	-1.5	N/A
R227	Saint Joseph Neighborhood Historic District	71.7	69.3	-2.4	N/A
R305 (HP 12)	Delaware Court Apartments	61.4	60.5	-0.9	N/A
R314 (HP13)	Bals-Wocher House	58.3	57.9	-0.4	56.4
R315 (HP14)	Pearson Terrace	58.2	58.0	-0.2	56.3
R344 (HP9)	William Buschman Block	59.9	59.5	-0.4	55.3
R394	Chatham Arch Historic District	66.3	64.1	-2.2	61.7
R401	Massachusetts Avenue Commercial Historic District	69.4	69.4	0.0	62.6
R425	Lockerbie Square Historic District	67.3	67.2	-0.1	59.1
HP1	Gasteria, Inc.	59.9	59.5	-0.4	N/A
HP10	Windsor Park Neighborhood Historic District	66.6	67.6	1.0	N/A
HP11	Saints Peter and Paul Cathedral Parish Historic District	57.4	56.8	-0.6	N/A
HP15	Cole Motor Car Company	65.5	64.8	-0.7	N/A

8 CONSTRUCTION NOISE

Construction of the proposed improvements will result in a temporary increase in the ambient noise level along I-65 and I-70. The major construction elements of this project are expected to be demolition, hauling, grading, paving, and bridge construction. General construction noise impacts for passerby and those individuals living or working near the project can be expected from demolition, earth moving, pile driving, and paving operations. Equipment associated with construction generally includes backhoes, graders, pavers, concrete trucks, compressors, and other miscellaneous heavy equipment.

Figure 2 shows some typical peak operating noise levels for equipment at 50 feet, grouping construction equipment according to mobility and operating characteristics. Considering the temporary nature of specific construction stages, and thus construction noise, impacts are not expected to be substantial. The typical outdoor to indoor noise reduction qualities of the homes, places of worship, schools, and businesses are believed to be sufficient to moderate the effects of intrusive construction noise. INDOT will be sensitive to local needs and may make adjustments to work practices in order to reduce inconvenience to the public.

Figure 2: Construction Equipment Sound Levels

		NOISE LEVEL (dBA) AT 15m (50ft)					
		60	70	80	90	100	110
	by Internal Combustion Engin	ies	-				
Earth Moving	Compacters (Rollers)		-				
	Front Loaders		_				
	Backhoes		-				
	Tractors						
	Scapers, Graders						
	Pavers						
	Trucks			-			
Materials Handling	Concrete Mixers						
	Concrete Pumps			-			
	Cranes (Movable)						
	Cranes (Derrick)				-		
Stationary	Pumps		-				
	Generators						
	Compressors						
Impact Equipment							
	Pnuematic Wrenches			-	-		
	Jack Hammers, Rock Drills			_			
	Pile Drivers (Peaks)						•
Other Equipment							
	Vibrator						
	Saws						
SOURCE: U.S. Report	o the President and Congress on No	ise Februa	rv 1972	I	I	1	

9 PUBLIC INVOLVEMENT

As described in the *INDOT Traffic Noise Analysis Procedure*, INDOT is required to seek the input of owners and residents of all benefited property. The concerns and opinions of the property owners and the unit occupants will be balanced with other considerations in determining whether a barrier is appropriate for a given location. This information will be gathered during a public involvement process that will commence following the approval of this *Draft Traffic Noise Technical Report* and the results of this process will be detailed in the *Final Traffic Noise Technical Report*.

10 STATEMENT OF LIKELIHOOD

Based on the studies completed to date, the State of Indiana has identified 209 impacted receptors and has determined that noise abatement is likely, but not guaranteed, at four locations. Noise abatement at these locations is based on preliminary design costs and design criteria. Noise abatement in these locations at this time has been estimated to cost \$690,930, \$893,130, \$691,860, and \$2,711,670 and will reduce the noise level by a minimum of 7 dB(A) at a majority of the identified impacted receptors. A re-evaluation of the noise analysis will occur during final design. If during final design it has been determined that conditions have changed such that noise abatement is not feasible and reasonable, the abatement measures might not be provided.

The final decision on the installation of any abatement measure(s) will be made upon the completion of the project's final design and the public involvement processes. The viewpoints of the benefited residents and property owners will be sought and considered in determining the reasonableness of highway traffic noise abatement measures for proposed highway construction projects. INDOT will incorporate highway traffic noise consideration in ongoing activities for public involvement in the highway program.

11 CONCLUSION

INDOT has identified those noise receptors that would be exposed to 2041 design year noise levels approaching or exceeding the FHWA noise abatement criteria of 67 dB(A) Leq(h). A total of 209 receptors within the North Split project study area have been found to meet this criterion.

Eight noise barrier locations (most with multiple acoustical designs) were modeled in the study area. The noise barrier designs ranged from 600 to 4,734 feet in length, 11 to 20 feet in average height, and ranged in cost from \$204,060 to \$2,711,670. The cost per benefited receptor for the analyzed barriers ranged from \$9,681 to \$288,653. Noise abatement at these locations is based upon preliminary estimated costs and design criteria. INDOT has determined that noise abatement is likely, but not guaranteed at four locations. Additional details regarding these barriers is provided in **Appendix E**. Changes to these barriers may be necessary due to conditions encountered during final design.

REFERENCES

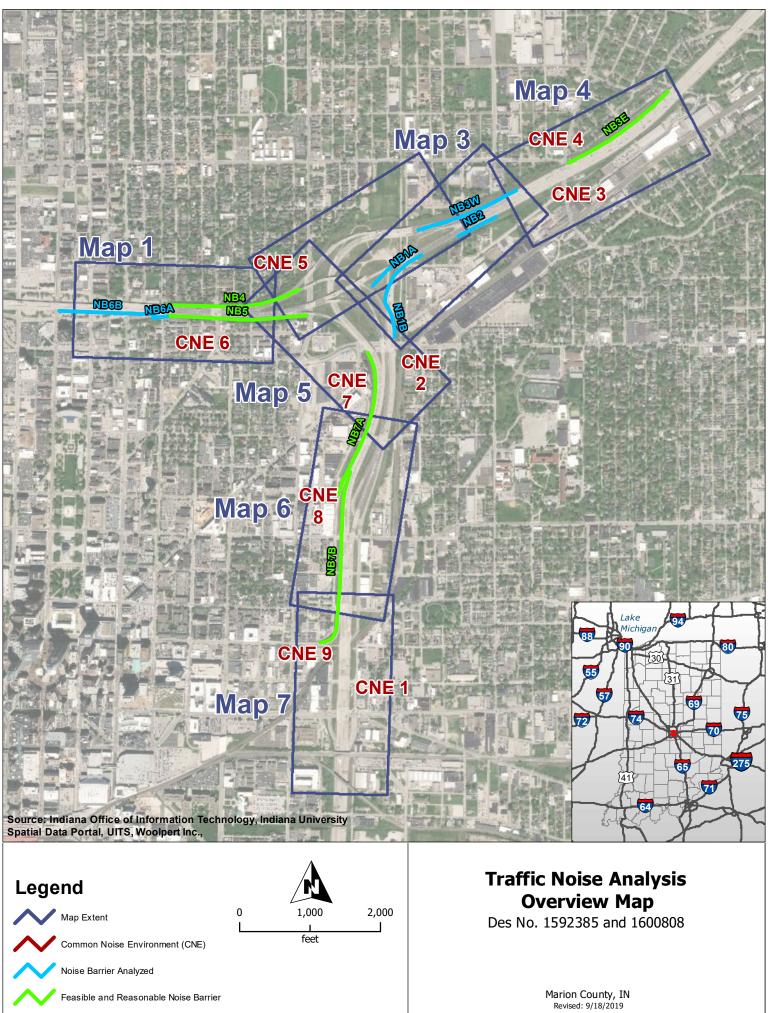
Anderson, G. S., C.S.Y. Lee, G.G. Fleming and C. Menge, "FHWA Traffic Noise Model®, Version 1.0 User's Guide", Federal Highway Administration, January 1998, p. 60.

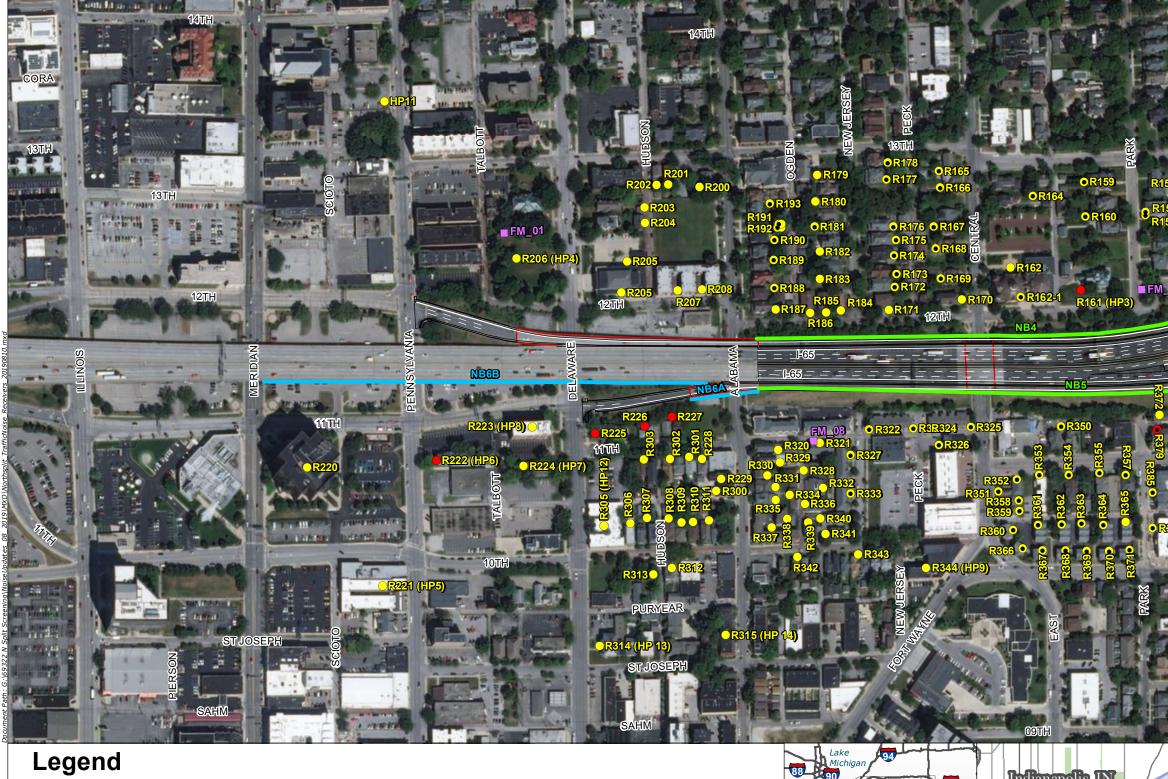
Lau, Michael C., Cynthia S. Y. Lee, Gregg G. Judith L. Rochat, Eric R. Boeker, and Gregg C. Fleming. FHWA Traffic Noise Model® Users Guide (Version 2.5 Addendum). Federal Highway Administration, April 2004.

Taylor, Ron, City of Indianapolis Greenways Development Committee Files, email regarding "Re: Indy Greenway Trail Counts", July 12, 2019.

"Traffic Noise Analysis Procedure", Indiana Department of Transportation, 2017.

23 C.F.R. § 772 (2010). "Procedures for Abatement of Highway Traffic Noise and Construction Noise." Accessed June, 3, 2019.

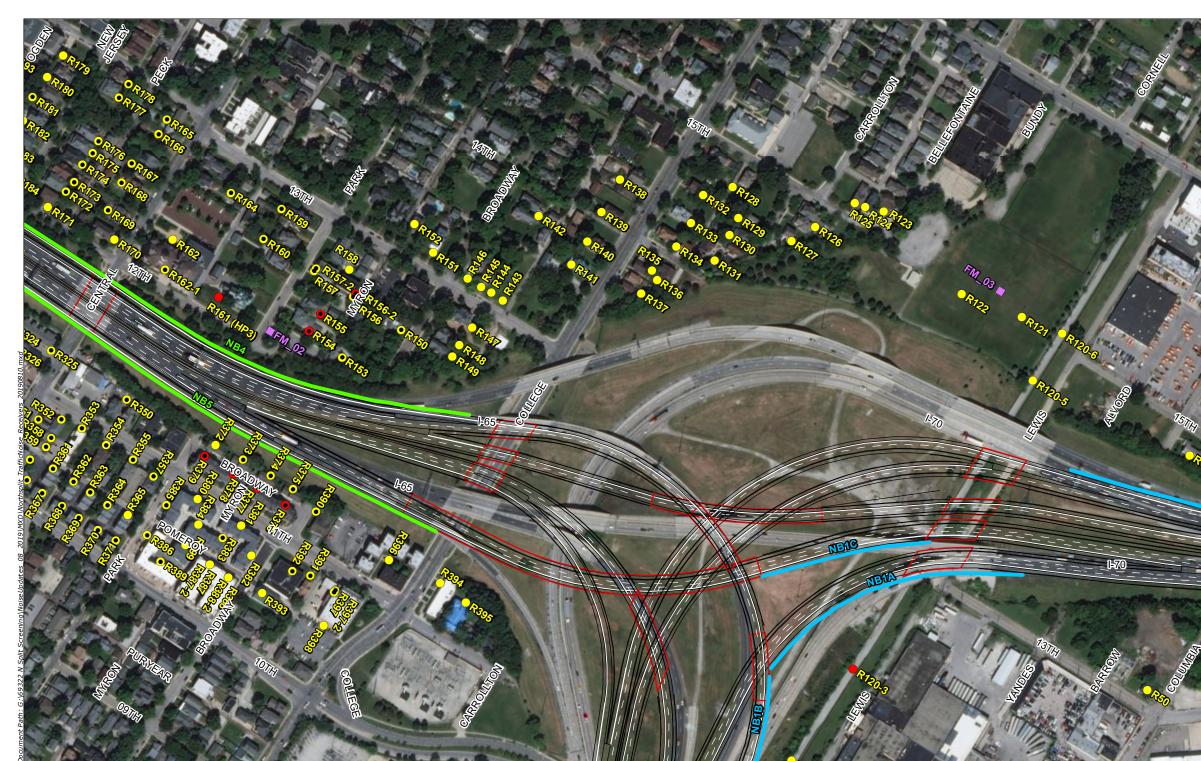

U.S. Department of Transportation. (1995). Highway Traffic Noise Analysis and Abatement Policy and Guidance. Washington DC: Federal Highway Administration Office of Environmental Planning Noise and Air Quality Branch


http://www.in.gov/indot/files/2017%20INDOT%20Noise%20Policy.pdf

APPENDIX A: TRAFFIC NOISE ANALYSIS MAPS

- Not Impacted / Not Benefited
- Impacted / Not Benefited
- Not Impacted / Benefited
- Impacted / Benefited
- Field Measurement Sites
- Noise Barriers Analyzed
 - Feasible and Reasonable Noise Barrier

Traffic Noise Analysis Maps


Source: Indiana Office of Info Spatial Data Portal, UITS, Woo

Des No. 1592385 and 1600808

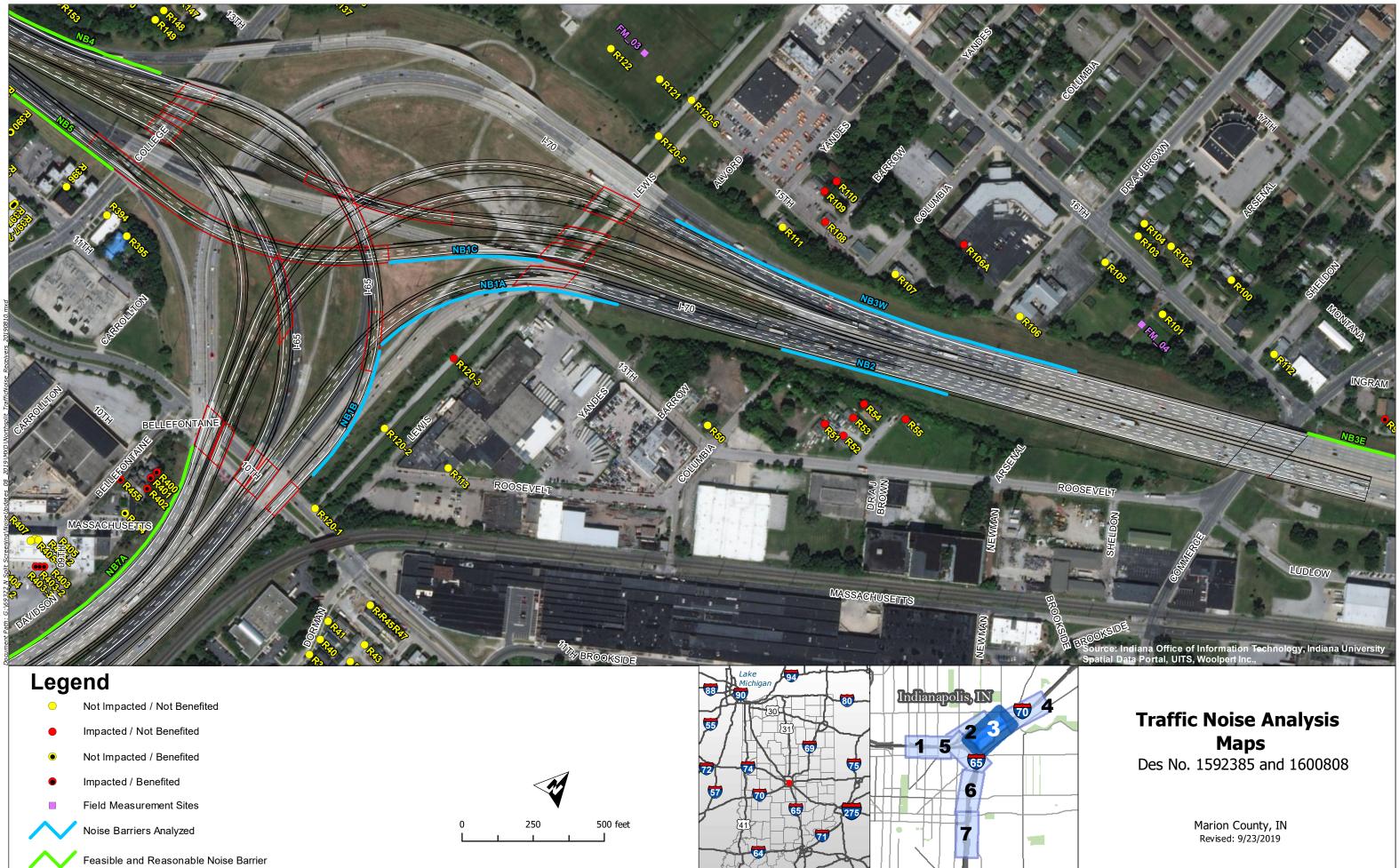
Marion County, IN Revised: 9/23/2019

gy, Indiana I

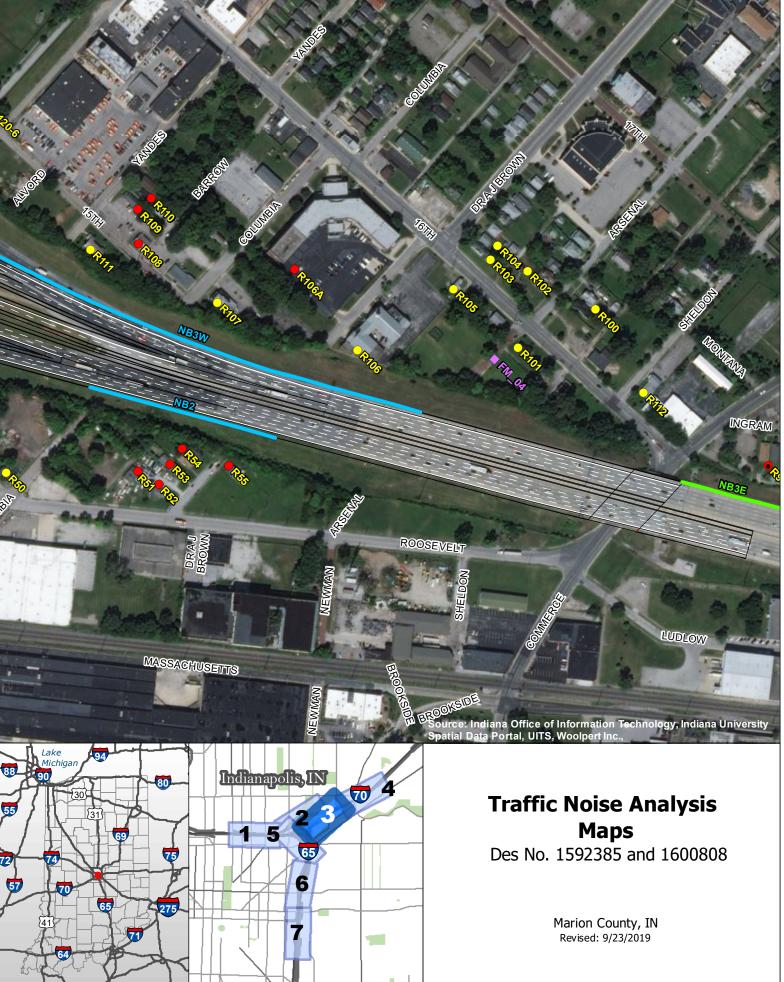
OTH

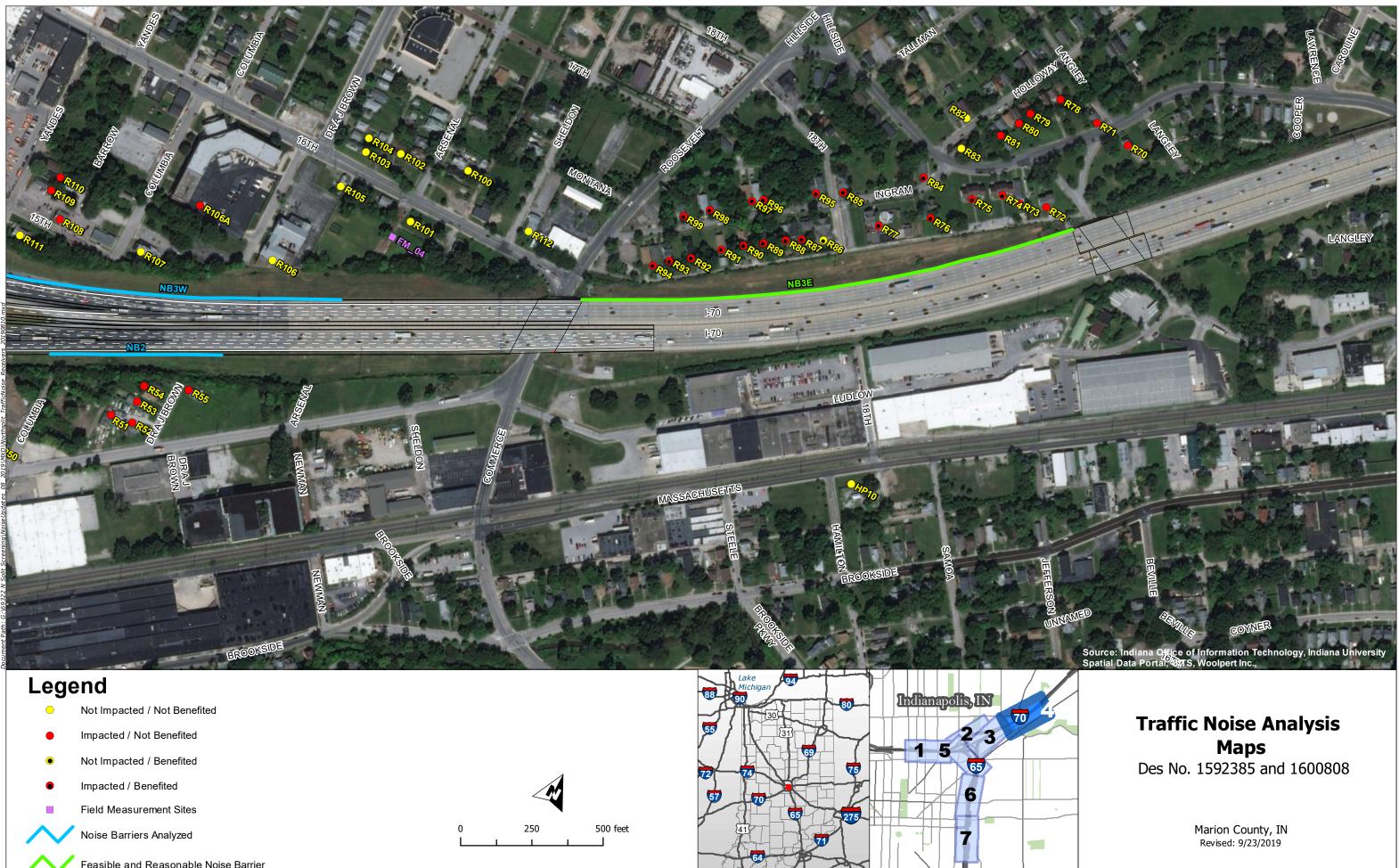
Legend

- \bigcirc Not Impacted / Not Benefited
- Impacted / Not Benefited
- Not Impacted / Benefited
- Impacted / Benefited
- Field Measurement Sites
- Noise Barriers Analyzed
 - Feasible and Reasonable Noise Barrier

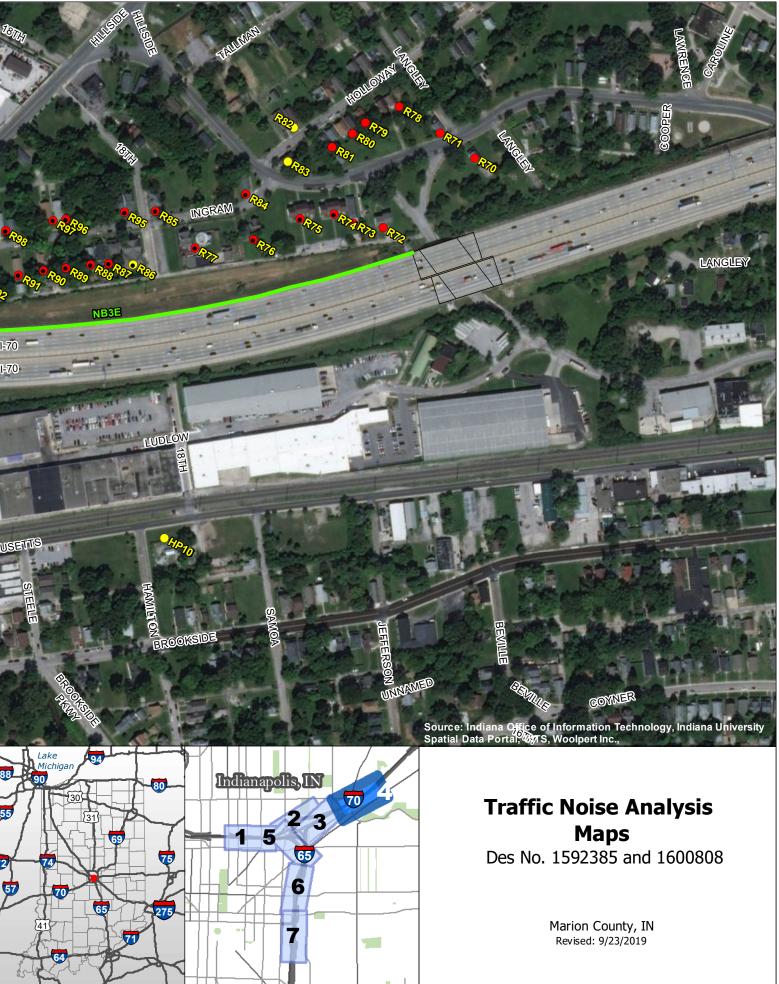

OSEVEL

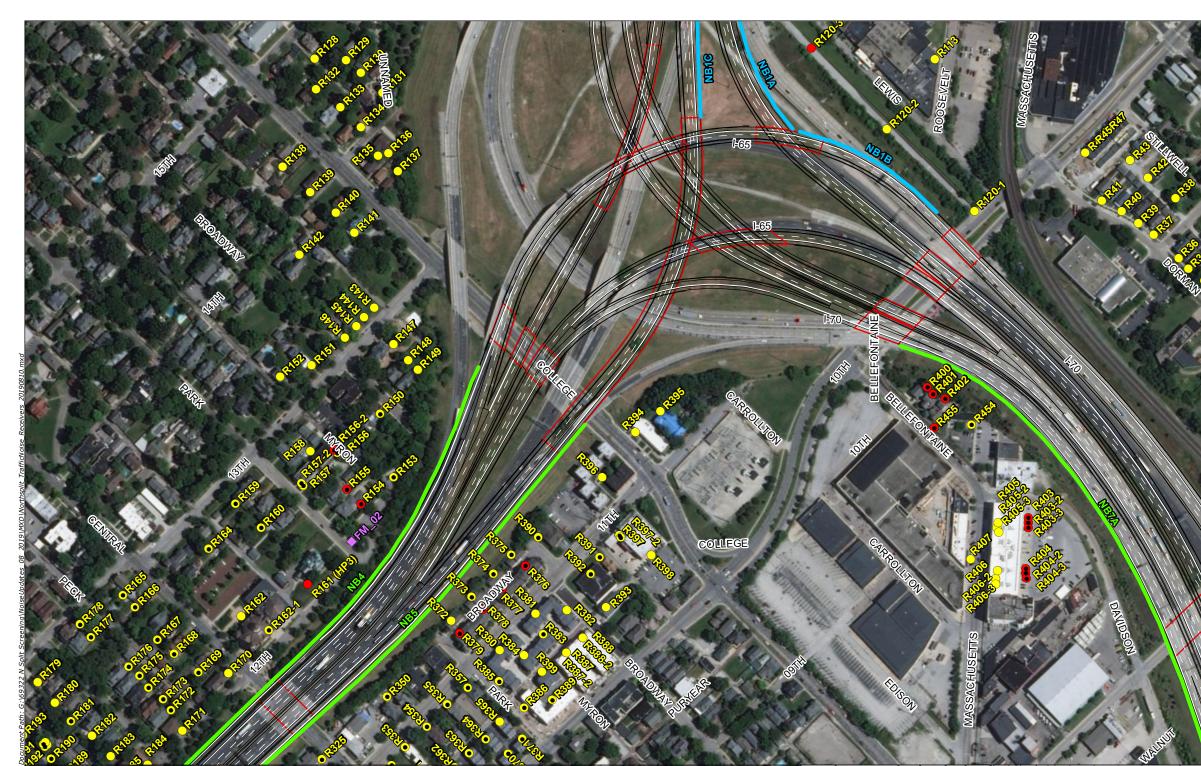
purce: Indiana Offic色GInformation T patial Data Portal, UITS, Woolpert Inc..


Des No. 1592385 and 1600808


Marion County, IN Revised: 9/23/2019

echnology<mark>코</mark>ho

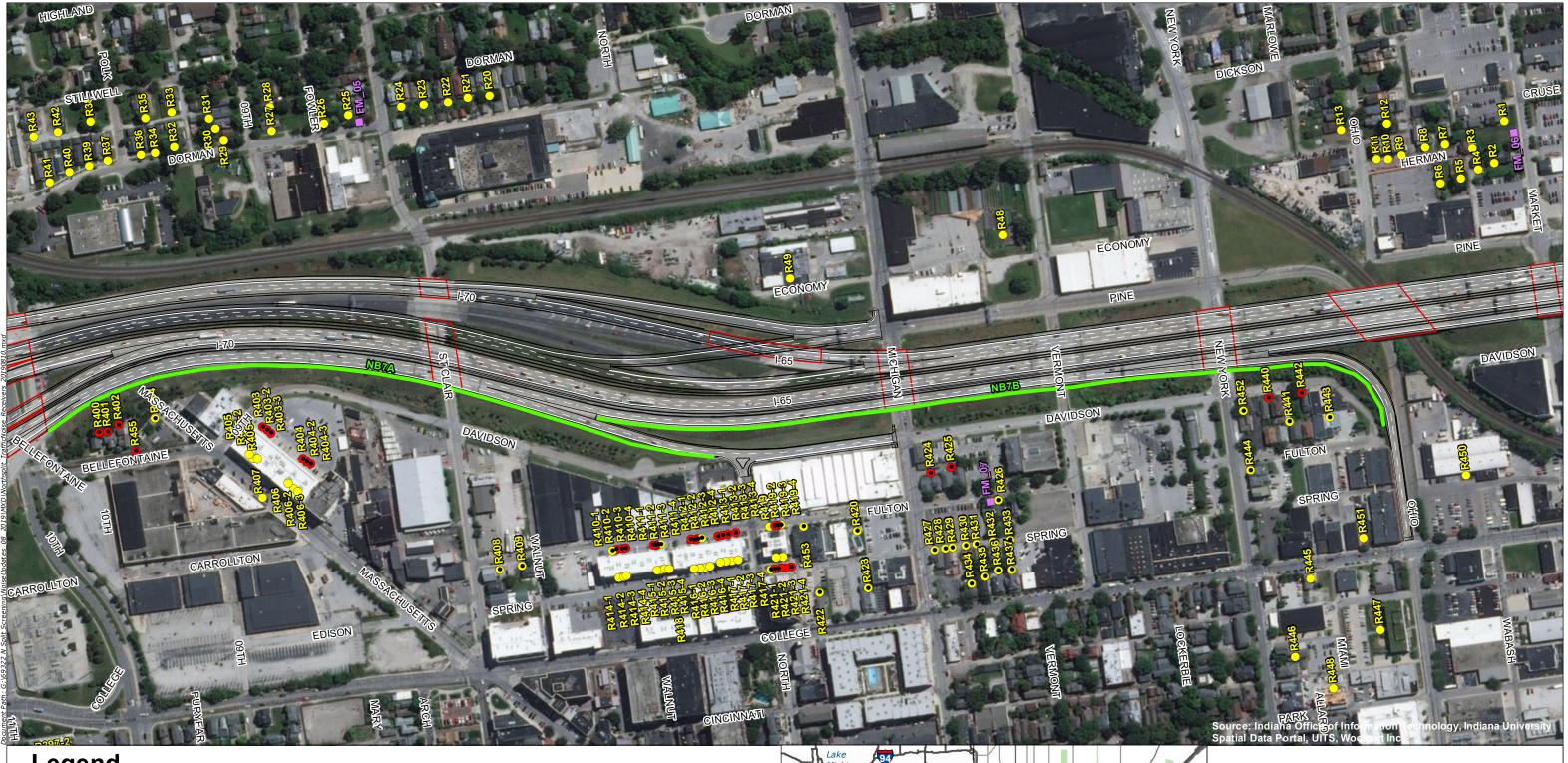




- - Feasible and Reasonable Noise Barrier

Legend

- Not Impacted / Not Benefited
- Impacted / Not Benefited
- Not Impacted / Benefited
- Impacted / Benefited
- Field Measurement Sites
- Noise Barriers Analyzed
 - Feasible and Reasonable Noise Barrier



Source: Indiana Office of Information Technology, Indiana Universit Spatial Data Portal, UITS, Woolpert Inc.,

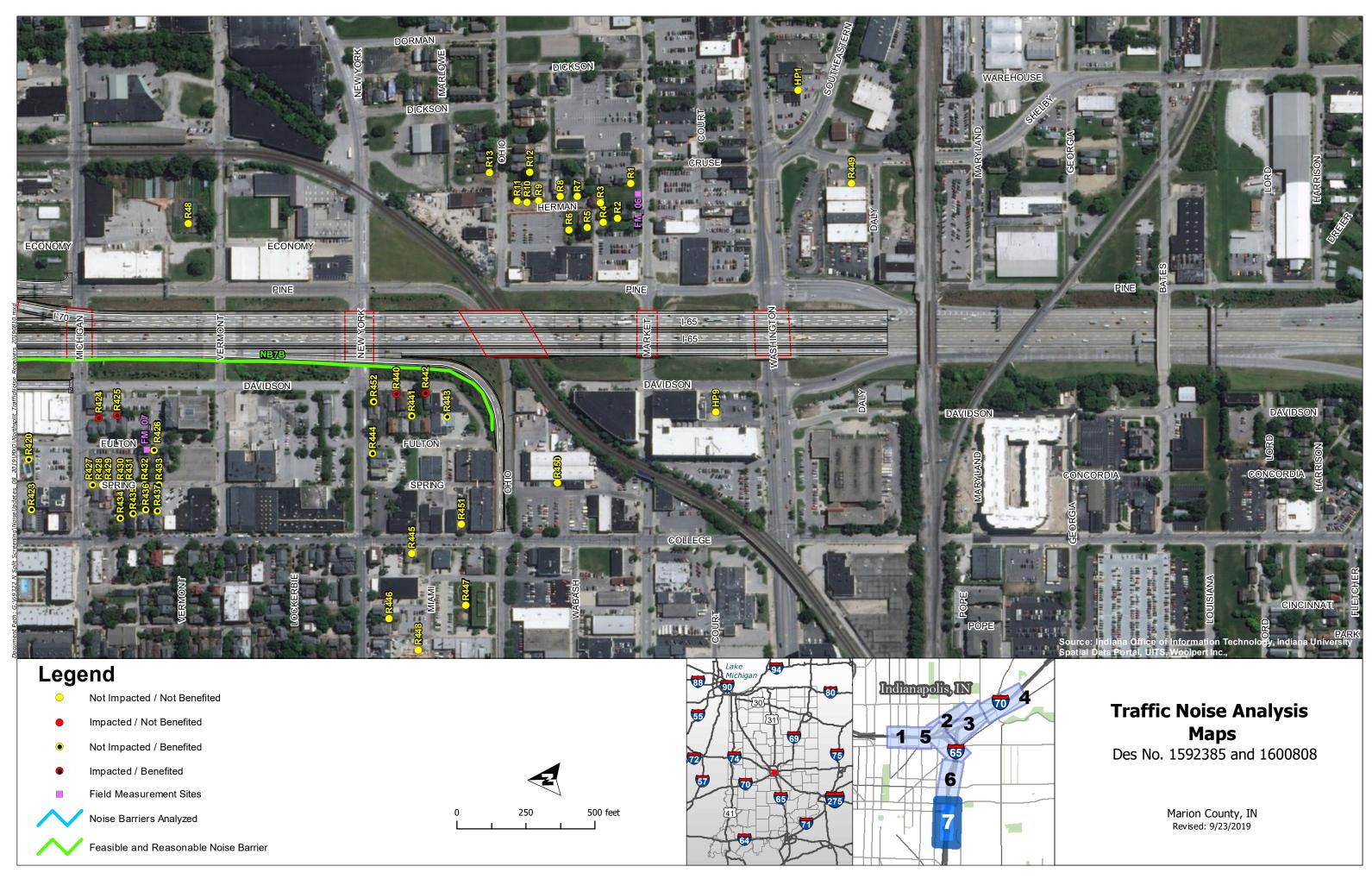
Traffic Noise Analysis Maps

Des No. 1592385 and 1600808

Marion County, IN Revised: 9/23/2019

Legend

- Not Impacted / Not Benefited
- Impacted / Not Benefited
- Not Impacted / Benefited
- Impacted / Benefited
- Field Measurement Sites
- Noise Barriers Analyzed
 - Feasible and Reasonable Noise Barrier


0 250 500 feet

Traffic Noise Analysis Maps

Des No. 1592385 and 1600808

Marion County, IN Revised: 9/23/2019

APPENDIX B: NOISE MEASUREMENT DATA SHEETS

PROJECT: I-65/I-70 North Split JOB #: Des

FM OI DATE: 10/30/2018

TRAFFIC DATA

US 20 EB - GSNR

41

83

9

2 59

1027

NOISE MEASUREMENT DATA SHEET

US 20-WB 1-655B

1024

35

86

10

-

(9)

BY: RJC/LB

TIME: 13:24 - 13:44

113.8 at 1k Hz dB. RESPONSE: FAST / SLOW

WEIGHTING: A/C/LIN.

EQUIPMENT			
INSTRUMENT	SLM		
SLM MANUFACTURER	Larson Davis		
SLM MODEL	LXT		
SLM	S / N 5625		
PREAMPLIFIER – Type 1206	S / N 46840		
MICROPHONE – Type 1225	S / N 305175		
CALIBRATOR – Type 1251	S / N 12852		

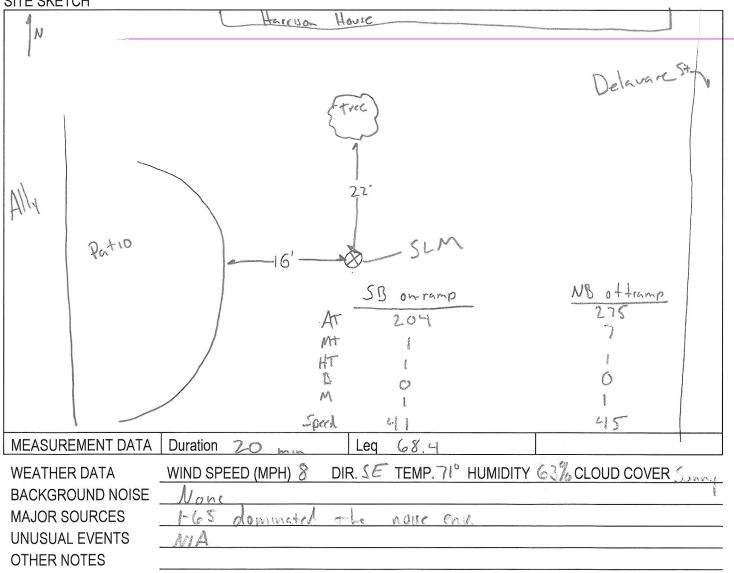
SITE SKETCH

MOTORCYCLE

HNTE

CALIBRATION:

ROAD (Name/Dir)


SITE:

AUTOS

BUS

SPEED

MED TRKS

HNTB <u>NOISE MEASUREMENT DATA SHEET</u>

 PROJECT:
 I-65/I-70 North Split
 JOB #:
 Des

 SITE:
 FMOL
 DATE:
 IO/30/2018

 CALIBRATION:
 113.8 at 1k Hz
 dB.

 RESPONSE:
 FAST / SLOW

US-20 EB- -65N N US 20 WB -6 558

7194

51

95

7

0

57

TRAFFIC DATA

1377

26

107

15

6

57

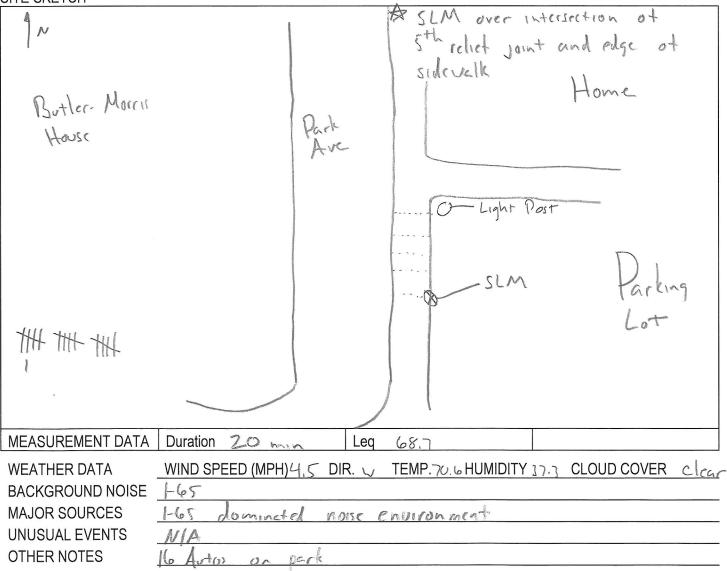
BY: <u>RJC/LB</u> TIME: <u>14:17-14:37</u>

WEIGHTING: A / C / LIN.

EQUIPMENT			
INSTRUMENT	SLM		
SLM MANUFACTURER	Larson Davis		
SLM MODEL	LXT		
SLM	S / N 5625		
PREAMPLIFIER – Type 1206	S / N 46840		
MICROPHONE – Type 1225	S / N 305175		
CALIBRATOR – Type 1251	S / N 12852		

SITE SKETCH

MOTORCYCLE


ROAD (Name/Dir)

AUTOS

BUS

SPEED

MED TRKS

HNTB NOISE MEASUREMENT DATA SHEET

> TRAFFIC DATA US-20 EB 170ER

> > 188

96

124

0

4

67

		OOT LEWENT DI		
PROJECT: I-65/I-70 North S	Split JOB #:	Des	BY:	RJC/LB
SITE: FM03			-	10:29 - 10:49
CALIBRATION: 113	.8 at 1k Hz dB.			
RESPONSE: FAST / SLOW			WEIGHT	ING: A/C/LIN.

810

6

54

0

6 61

EQUIPMENT US-20-WB 70 UN to brun INSTRUMENT SLM SLM MANUFACTURER Larson Davis SLM MODEL LXT S / N 5625 SLM PREAMPLIFIER - Type 1206 S / N 46840 MICROPHONE – Type 1225 S / N 305175 CALIBRATOR - Type 1251 S / N 12852

MOTORCYCLE

ROAD (Name/Dir)

AUTOS

BUS

SPEED

MED TRKS

SILE SKEICH	
70 UB TO AT 501 MT 48 HT 150 B 6 M 0 AN	OSSB = 62 OBannon Succer Park - SLM positioned in between 4 Poncrete pads used for benches.
	70
MEASUREMENT DATA	Duration 20 man Leg 60.9
WEATHER DATA	WIND SPEED (MPH) CIDIR. W TEMP. 42.8 HUMIDITY 81.7 CLOUD COVER Over (1)
	Faint save at industrial building
	65/70
UNUSUAL EVENTS	
OTHER NOTES	

HNTB <u>NOISE MEASUREMENT DATA SHEET</u>

US-20-WB 1-70 VA

1189

66

95

6

0

60

 PROJECT:
 I-65/I-70 North Split
 JOB #:
 Des

 SITE:
 FM 0 4
 DATE:
 112/2-018

 CALIBRATION:
 113.8 at 1k Hz
 dB.

 RESPONSE:
 FAST / SLOW

TRAFFIC DATA

US-20-EBIJUEM

1328

37

84

L

0

61

BY: RJC/LB

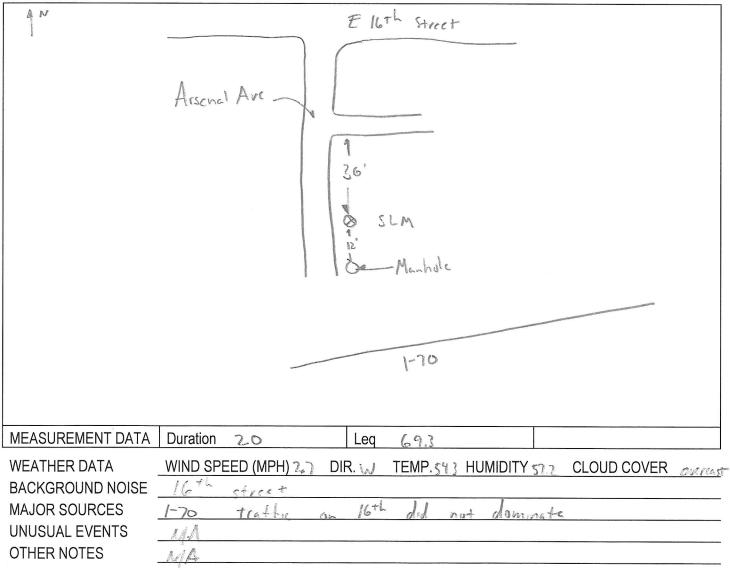
TIME: 15:02-15:22

WEIGHTING: A / C / LIN.

EQUIPMENT			
INSTRUMENT	SLM		
SLM MANUFACTURER	Larson Davis		
SLM MODEL	LXT		
SLM	S / N 5625		
PREAMPLIFIER – Type 1206	S / N 46840		
MICROPHONE – Type 1225	S / N 305175		
CALIBRATOR – Type 1251	S / N 12852		

SITE SKETCH

MOTORCYCLE


ROAD (Name/Dir)

AUTOS

BUS

SPEED

MED TRKS

ROAD (Name/Dir)

AUTOS

BUS

SPEED

MED TRKS

HVY TRKS

NOISE MEASUREMENT DATA SHEET

US 20 WB GILR

1266

58

14

0

Ó

60

PROJECT:	I-65/I-70 No	orth Split	JOB	#: _	Des
SITE:	FM 05		DATE	:	11/2/201
CALIBRATI	ON:	113.8 at 1k	Hz	dB.	
RESPONSE	E: FAST / SL	OW			

TRAFFIC DATA

US 20-EB GSNR

622

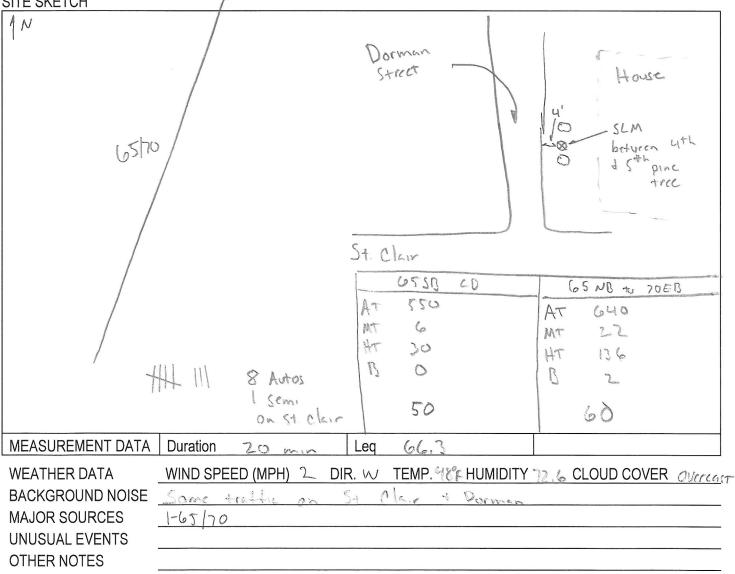
20

62

0

6

60


BY: <u>RJC/LB</u> TIME: //:אר - וו: דא

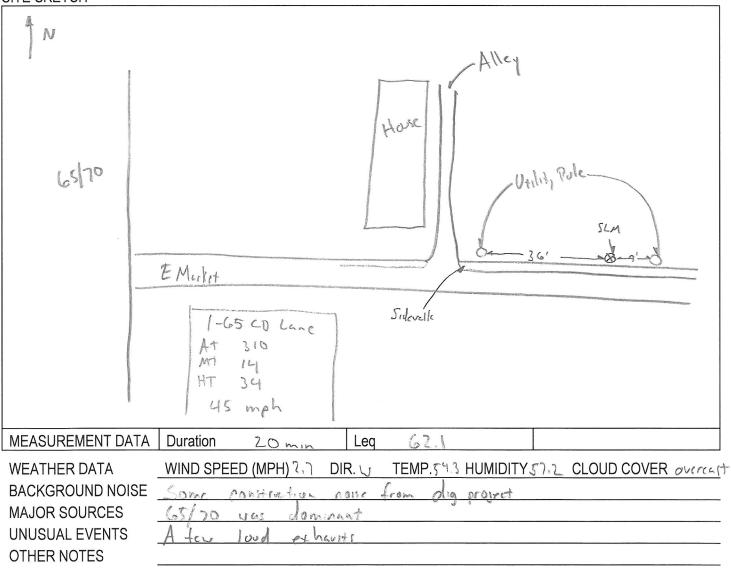
WEIGHTING: A / C / LIN.

EQUIPMENT			
INSTRUMENT	SLM		
SLM MANUFACTURER	Larson Davis		
SLM MODEL	LXT		
SLM	S / N 5625		
PREAMPLIFIER – Type 1206	S / N 46840		
MICROPHONE – Type 1225	S / N 305175		
CALIBRATOR – Type 1251	S / N 12852		

SITE SKETCH

MOTORCYCLE

HNTB NOISE MEASUREMENT DATA SHEET


PROJECT:	I-65/I-70 No	rth Split	JOB #:	Des	BY:	RJC/LB
SITE:	FM06		DATE:	11/2/2018	TIME:	16:35-16:55
CALIBRATI	ON:	113.8 at 1k I	<u>Hz</u> dB.	v		
RESPONSE	FAST/SL	OW			WEIGH1	ING: A/C/LIN.

TRAFFIC DATA			
ROAD (Name/Dir)	-US-20-EB1655B	US 20 WB	
AUTOS	1568	1836	
MED TRKS	48	36	
HVY TRKS	130	158	
BUS	0	0	
MOTORCYCLE	0	0	
SPEED	56	56	

TING: 🗛 / C / LIN.

EQUIPMENT			
INSTRUMENT	SLM		
SLM MANUFACTURER	Larson Davis		
SLM MODEL	LXT		
SLM	S / N 5625		
PREAMPLIFIER – Type 1206	S / N 46840		
MICROPHONE – Type 1225	S / N 305175		
CALIBRATOR – Type 1251	S / N 12852		

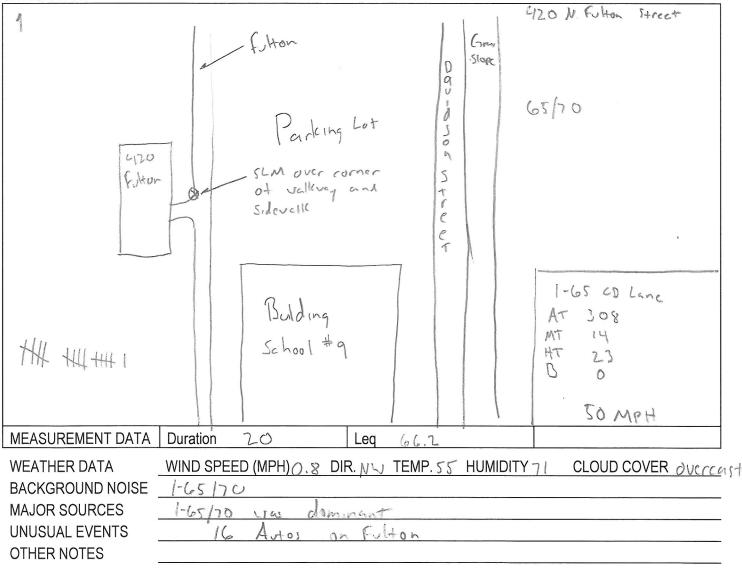
SITE SKETCH

HNTB <u>NOISE MEASUREMENT DATA SHEET</u>

PROJECT:	I-65/I-70 No	orth Split JC)B #:	Ľ
SITE:	FMON	DA	ATE:	
	ON∙	113.8 at 1k Hz	dB	

Des 11/5/2018 BY: <u>RJC/LB</u> TIME: <u>10;57 - 11'17</u>

CALIBRATION: <u>113.8 at 1k Hz</u>


RESPONSE: FAST / SLOW

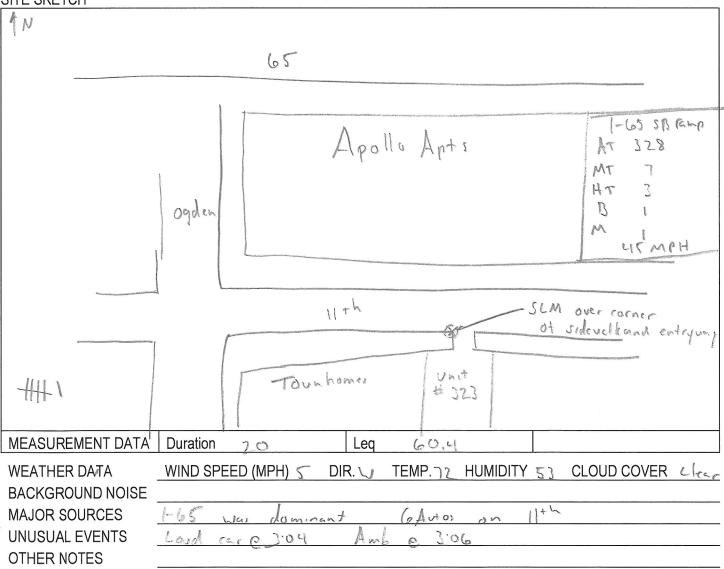
TRAFFIC DATA			
ROAD (Name/Dir)	US-20-EBI-45NB	US-20-WB 1-65 57,	
AUTOS	1081	723	
MED TRKS	615	22	
HVY TRKS	103	112	
BUS	5	1	
MOTORCYCLE	0	0	
SPEED	58	58	

WEIGHTING: A / C / LIN.

EQUIPMENT					
INSTRUMENT	SLM				
SLM MANUFACTURER	Larson Davis				
SLM MODEL	LXT				
SLM	S / N 5625				
PREAMPLIFIER – Type 1206	S / N 46840				
MICROPHONE – Type 1225	S / N 305175				
CALIBRATOR – Type 1251	S / N 12852				

SITE SKETCH

HNTB NOISE MEASUREMENT DATA SHEET


PROJECT:	I-65/I-70 North Split	JOB #:	Des	BY:	RJC/LB	
SITE:	FMO8	DATE:	10/30/2018	TIME:	14:58-15,18	
CALIBRATION: 113.8 at 1k Hz dB.						
RESPONSE	: FAST / SLOW			WEIGHT	ING: A/C/LIN.	

TRAFFIC DATA						
ROAD (Name/Dir)	US-20-WB 1-45 55					
AUTOS	11721	12.09				
MED TRKS	201	40				
HVY TRKS	120	100				
BUS	29	27				
MOTORCYCLE	and the second se	0				
SPEED	60	0				

WEIGHTING: A/C/LIN.

EQUIPMENT					
INSTRUMENT	SLM				
SLM MANUFACTURER	Larson Davis				
SLM MODEL	LXT				
SLM	S / N 5625				
PREAMPLIFIER – Type 1206	S / N 46840				
MICROPHONE – Type 1225	S / N 305175				
CALIBRATOR – Type 1251	S / N 12852				

SITE SKETCH

APPENDIX C: CERTIFICATES OF CALIBRATION

~Calibration Certificate~

3149 East Kemper Rd. Cincinnati, OH 45241 Ph : 513-351-9919 Fax: 513-458-2172 www.modalshop.com

Manufacturer:	Larson Davis	Asset ID:	57194
Model:	CAL200	Calibration Date:	Feb 26, 2018 15:55:54
Serial Number:	12852	Due Date:	
Description:	Acoustic Calibrator	Technician:	Bradly Haarmeyer
Customer:	TMS Rental	Approval:	B-dby H-j-
Calibration Results:	_	Temperature:	23 °C (74 °F)
Measured SPL : 114.1	l6 dB re. 20μPa	Humidity:	21.90%
Measured Frequency	: 1,003.00 Hz	Pressure:	1004.4 mbar

Upon receipt for calibration, the instrument was found to be: WITHIN the stated tolerance of the manufacturer's specification.

Note: As Found / As Left: In Tolerance.

Measurement uncertainty at 95% confidence level: 0.30 dB

The subject instrument was calibrated to the indicated specification using standards stated below or to accepted values of natural physical constants. This document certifies that the instrument met the following specification

This calibration is traceable through : A1633

Notes:

The calibration was performed under operating procedures intended to implement the requirements of ISO 9001, ISO 17025 and ANSI Z540. Unless otherwise noted, the reported value is both "as found" and "as left" data. Calibration results relate only to the items calibrated. This certificate may not be reproduced, except in full, without written permission.

Reference Equipment Used:								
Manuf	f. Model	Serial	Cal. Date Due Date					
GRAS	40AG	9542	2/16/2017 2/16/2018					

Calibration Certificate

Certificate Number 2018005268 Customer: The Modal Shop 3149 East Kemper Road Cincinnati, OH 45241, United States

Model Number Serial Number Test Results	LxT1 000562 Pass	25	Procedure Number Technician Calibration Date	D0001 Ron H 23 Ma		
Initial Condition	As Mar	nufactured	Calibration Due Temperature	23.42	°C	± 0.25 °C
Description	SoundTrack LxT Class 1 Class 1 Sound Level Meter Firmware Revision: 2.302		Humidity Static Pressure	50.7 86.02	%RH	
Evaluation Metho	od	Tested electrically using Larson Davis F microphone capacitance. Data reported mV/Pa.		-	-	
Compliance Standards		Compliant to Manufacturer Specification Calibration Certificate from procedure D	•	irds whe	n combi	ined with
		IEC 60651:2001 Type 1 IEC 60804:2000 Type 1 IEC 61252:2002 IEC 61260:2001 Class 1 IEC 61672:2013 Class 1	ANSI S1.4-2014 Class 1 ANSI S1.4 (R2006) Type ANSI S1.11 (R2009) Clas ANSI S1.25 (R2007) ANSI S1.43 (R2007) Typ	ss 1		

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

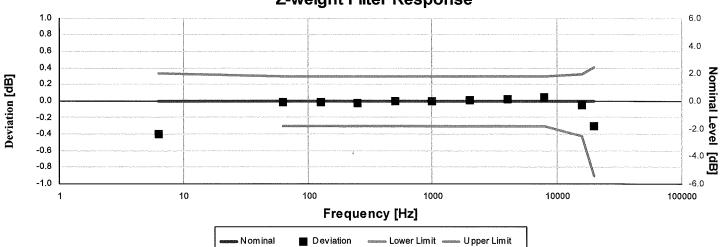
The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, 1770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa

Larson Davis, a division of PCB Piezotronics, Inc
1681 West 820 North
Provo, UT 84601, United States
716-684-0001

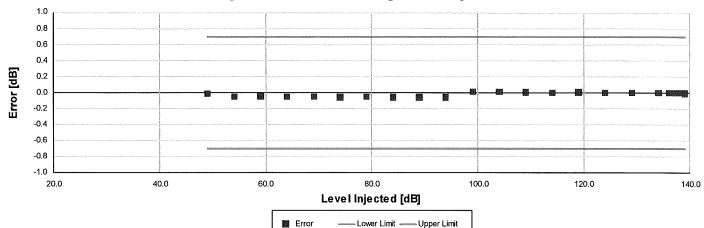


	Standards Used		
Description	Cal Date	Cal Due	Cal Standard
SRS DS360 Ultra Low Distortion Generator	2017-06-23	2018-06-23	006311
Hart Scientific 2626-S Humidity/Temperature Sensor	2017-06-11	2018-06-11	006943

CARSON DAVIS

^{2018-5-23T16:40:29}Des. No. 1592385 and 1600808

Z-weight Filter Response


Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
6.31	-0.40	-0.40	-1.11	0.33	0.10	Pass
63.10	-0.02	-0.02	-0.30	0.30	0.09	Pass
125.89	-0.02	-0.02	-0.30	0.30	0.09	Pass
251.19	-0.02	-0.02	-0.30	0.30	0.09	Pass
501.19	-0.01	-0.01	-0.30	0.30	0.09	Pass
1,000.00	0.00	0.00	-0.30	0.30	0.09	Pass
1,995.26	0.01	0.01	-0.30	0.30	0.09	Pass
3,981.07	0.02	0.02	-0.30	0.30	0.09	Pass
7,943.28	0.04	0.04	-0.30	0.30	0.09	Pass
15,848.93	-0.05	-0.05	-0.42	0.32	0.09	Pass
19,952.62	-0.30	-0.30	-0.91	0.41	0.09	Pass
		En	d of measurement res	ults		

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

A-weighted Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
49.00	-0.01	-0.70	0.70	0.09	Pass
54.00	-0.05	-0.70	0.70	0.09	Pass
59.00	-0.05	-0.70	0.70	0.09	Pass
64.00	-0.05	-0.70	0.70	0.09	Pass
69.00	-0.05	-0.70	0.70	0.09	Pass
74.00	-0.06	-0.70	0.70	0.09	Pass
79.00	-0.05	-0.70	0.70	0.09	Pass
84.00	-0.06	-0.70	0.70	0.09	Pass
89.00	-0.06	-0.70	0.70	0.09	Pass
94.00	-0.06	-0.70	0.70	0.09	Pass
99.00	0.01	-0.70	0.70	0.09	Pass
104.00	0.01	-0.70	0.70	0.09	Pass
109.00	0.00	-0.70	0.70	0.09	Pass
114.00	0.00	-0.70	0.70	0.09	Pass
119.00	0.00	-0.70	0.70	0.09	Pass
124.00	0.00	-0.70	0.70	0.09	Pass
129.00	0.00	-0.70	0.70	0.09	Pass
134.00	0.00	-0.70	0.70	0.09	Pass
136.00	0.00	-0.70	0.70	0.09	Pass
137.00	0.00	-0.70	0.70	0.09	Pass
138.00	0.00	-0.70	0.70	0.09	Pass
139.00	-0.01	-0.70	0.70	0.09	Pass
	En	d of measurement res	ults		

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration [µs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
137.85	40	Negative Pulse	138.45	137.02	139.02	0.09	Pass
		Positive Pulse	138.46	137.00	139.00	0.09	Pass
	30	Negative Pulse	137.59	137.02	139.02	0.09	Pass
		Positive Pulse	137.57	137.00	139.00	0.09	Pass
			End of meas	urement results			

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

^{2018-5-23T16:40:29}Des. No. 1592385 and 1600808

Page 4 of 7

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Resul	Expanded Uncertainty [dB]	Limits [dB]	Test Result [dB]	Crest Factor	Amplitude [dB]
Pass	0.09	± 0.50	OVLD	3	136.85
Pass	0.09	± 1.00	OVLD	5	
Pass	0.09	± 1.50	OVLD	10	
Pass	0.09	± 0.50	-0.13	3	126.85
Pass	0.11	± 1.00	-0.12	5	
Pass	0.09	± 1.50	OVLD	10	
Pass	0.09	± 0.50	-0.12	3	116.85
Pass	0.09	± 1.00	-0.11	5	
Pass	0.09	± 1.50	-0.25	10	
Pass	0.09	± 0.50	-0.13	3	106.85
Pass	0.09	± 1.00	-0.12	5	
Pass	0.09	± 1.50	-0.16	10	

-- End of measurement results--

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

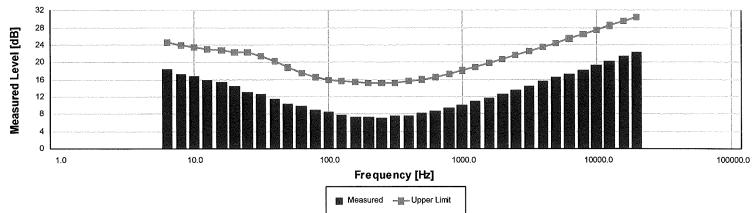
Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
136.85	3	OVLD	± 0.50	0.09	Pass
	5	OVLD	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
126.85	3	-0.12	± 0.50	0.09	Pass
	5	-0.10	± 1.00	0.09	Pass
	10	OVLD	± 1.50	0.09	Pass
116.85	3	-0.11	± 0.50	0.09	Pass
	5	-0.11	± 1.00	0.09	Pass
	10	-0.24	± 1.50	0.09	Pass
106.85	3	-0.12	± 0.50	0.09	Pass
	5	-0.13	± 1.00	0.09	Pass
	10	-0.16	± 1.50	0.09	Pass

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
0 dB Gain	93.94	93.90	94.10	0.09	Pass
0 dB Gain, Linearity	41.09	40.30	41.70	0.09	Pass
OBA Low Range	94.00	93.90	94.10	0.09	Pass
OBA Normal Range	94.00	93.20	94.80	0.09	Pass
-	Enc	l of measurement resu	ılts		

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001



^{2018-5-23T16:40:29}Des. No. 1592385 and 1600808

Page 5 of 7

1/3-Octave Self-Generated Noise

The SLM is set to low range.

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	18.47	24.60	Pass
8.00	17.38	24.00	Pass
10.00	16.81	23.50	Pass
12.50	15.85	23.00	Pass
16.00	15.46	22.90	Pass
20.00	14.43	22.40	Pass
25.00	13.15	22.30	Pass
31.50	12.60	21.50	Pass
40.00	11.48	20.20	Pass
50.00	10.45	18.80	Pass
63.00	9.92	17.60	Pass
80.00	9.08	16.60	Pass
100.00	8.41	15.90	Pass
125.00	7.84	15.70	Pass
160.00	7.31	15.50	Pass
200.00	7.28	15.20	Pass
250.00	7.10	15.20	Pass
315.00	7.51	15.20	Pass
400.00	7.52	15.70	Pass
500.00	8.21	16.00	Pass
630.00	8.76	16.60	Pass
800.00	9.44	17.30	Pass
1,000.00	10.13	18.10	Pass
1,250.00	10.95	18.90	Pass
1,600.00	11.81	19.80	Pass
2,000.00	12.58	20.80	Pass
2,500.00	13.53	21.70	Pass
3,150.00	14.52	22.60	Pass
4,000.00	15.57	23.50	Pass
5,000.00	16.51	24.50	Pass
6,300.00	17.38	25.50	Pass
8,000.00	18.32	26.50	Pass
10,000.00	19.39	27.40	Pass
12,500.00	20.29	28.50	Pass
16,000.00	21.34	29.50	Pass
20,000.00	22.35	30.40	Pass
	End of measu	urement results	

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	26.90	36.00	Pass
C-weight Noise Floor	26.48	35.00	Pass
Z-weight Noise Floor	33.60	39.00	Pass

-- End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	135.50	135.05	136.65	0.09	Pass
THD	-65.58		-58.00	0.01	Pass
THD+N	-62.02		-58.00	0.01	Pass
		End of measurement r	esults		

-- End of Report--

Signatory: <u>Ron Harris</u>

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

^{2018-5-23T16:40:2}Des. No. 1592385 and 1600808

Calibration Certificate

Certificate Number 2018005269 Customer: The Modal Shop 3149 East Kemper Road Cincinnati, OH 45241, United States

Model Number	LxT1		Procedure Number	D0001	.8384	
Serial Number	000562	25	Technician	Ron H	arris	
Test Results	Pass		Calibration Date	23 Ma	y 2018	
Initial Condition	Ac Mor	nufactured	Calibration Due			
Initial Condition	AS Wai	lulactured	Temperature	23.59	°C	± 0.25 °C
Description	Sound	Frack LxT Class 1	Humidity	50.4	%RH	± 2.0 %RH
	Class 1	Sound Level Meter	Static Pressure	85.99	kPa	± 0.13 kPa
	Firmwa	are Revision: 2.302				
Evaluation Metho	od	Tested with:	Dat	a report	ed in di	Β re 20 μPa.
		Larson Davis PRMLxT1. S/N 046882 PCB 377B02. S/N 304769 Larson Davis CAL200. S/N 9079 Larson Davis CAL291. S/N 0108				
Compliance Stan	ndards	Compliant to Manufacturer Specification Calibration Certificate from procedure	-	ards whe	n comb	ined with
		IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1			
		IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type	e 1		
		IEC 61252:2002	ANSI S1.11 (R2009) Cla	ss 1		
		IEC 61260:2001 Class 1	ANSI S1.25 (R2007)			
		IEC 61672:2013 Class 1	ANSI S1.43 (R2007) Typ	e 1		

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, 1770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Page 1 of 3

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to 1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 μPa

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 successfully completed by Physikalisch-Technische Bundesanstalt (PTB) on 2007-10-09 reference number PTB-1.72-4034218.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. As evidence was publicly available, from an independent testing organization responsible for approving the results of pattern-evaluation tests performed in accordance with IEC 61672-2:2013 / ANSI/ASA S1.4-2014/Part 2, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1; the sound level meter submitted for testing conforms to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used	La contraction de la c	
Description	Cal Date	Cal Due	Cal Standard
Larson Davis CAL291 Residual Intensity Calibrator	2017-09-19	2018-09-19	001250
SRS DS360 Ultra Low Distortion Generator	2017-06-23	2018-06-23	006311
Hart Scientific 2626-S Humidity/Temperature Sensor	2017-06-11	2018-06-11	006943
Larson Davis CAL200 Acoustic Calibrator	2017-07-25	2018-07-25	007027
Larson Davis Model 831	2018-02-28	2019-02-28	007182
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	2018-03-07	2019-03-07	007185

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.22	-0.20	-1.20	0.80	0.23	Pass
1000	0.09	0.00	-0.70	0.70	0.23	Pass
8000	-2.83	-3.00	-5.50	-1.50	0.32	Pass

-- End of measurement results--

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and AN	SI S1.4-2014 Part 3: 11.1	
Measurement	Test Result [dB]	
A-weighted	40.36	na una municipa de la construction de la construcción de la construcción de la construcción de la construcción
	End of measurement results	
Larson Davis, a division of PCB Piezotronics, Inc		

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

^{2018-5-23T16;49:59}Des. No. 1592385 and 1600808

Page 2 of 3

-- End of Report--

Signatory: <u>Ron Harris</u>

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

^{2018-5-23T16:49:59}Des. No. 1592385 and 1600808

Page 3 of 3

~ Certificate of Calibration and Compliance ~

Microphone Model: 377B02

Serial Number: 305175

Manufacturer: PCB

Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

Manufacturer	Model #	Serial #	PCB Control #	Cal Date	Due Date
National Instruments	PCIe-6351	1896F08	CA1918	10/20/17	10/19/18
Larson Davis	PRM915	134	CA2114	11/30/17	11/30/18
Larson Davis	PRM902	5352	CA1247	4/12/18	4/12/19
Larson Davis	PRM916	130	CA1161	9/13/17	9/13/18
Larson Davis	CAL250	5109	CA1496	10/19/17	10/19/18
Larson Davis	2201	140	CA890	5/3/17	5/3/18
Bruel & Kjaer	4192	2954556	CA2323	9/15/17	9/14/18
Larson Davis	GPRM902	3999	CA1090	9/20/17	9/20/18
Newport	iTHX-SD/N	1080002	CA1511	2/9/18	2/8/19
Larson Davis	PRA951-4	222	LD026	12/19/17	12/19/18
Larson Davis	PRM915	147	CA2179	6/6/17	6/6/18
PCB	68510-02	N/A	CA2672	12/27/17	12/27/18
0	0	0	0	not required	not required
0	0	0	0	not required	not required
0	0	0	0	not required	not required

Reference Equipment

Frequency sweep performed with B&K UA0033 electrostatic actuator.

Condition of Unit

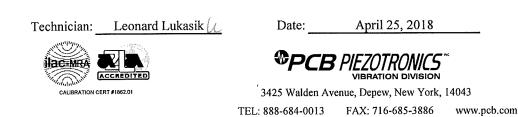
As Found: n/a

As Left: New Unit, In Tolerance

Notes

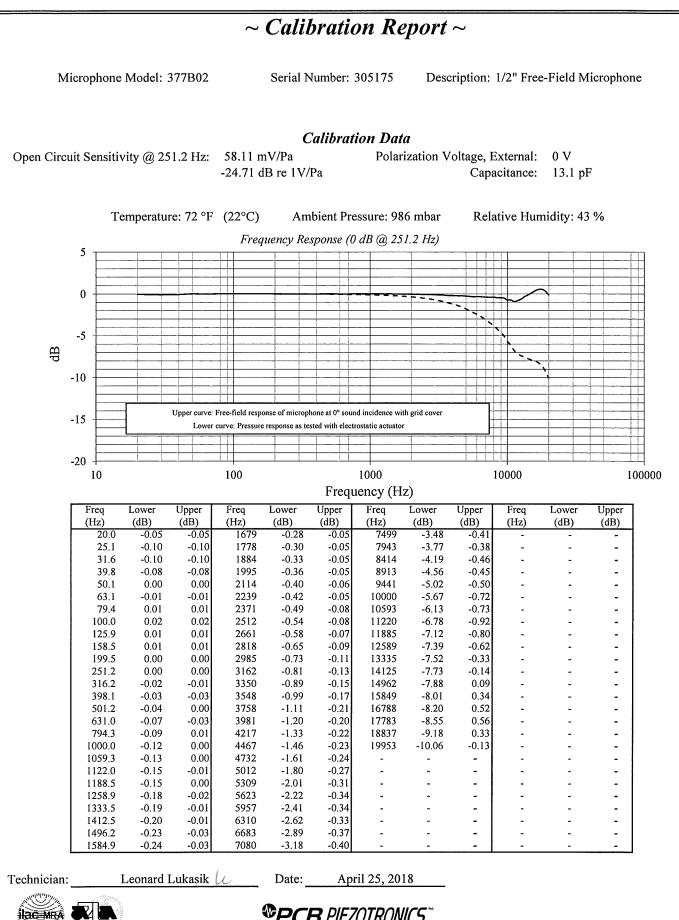
1. Calibration of reference equipment is traceable to one or more of the following National Labs; NIST, PTB or DFM.

2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.


3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.

4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.

5. Open Circuit Sensitivity is measured using the insertion voltage method following procedure AT603-5.


6. Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.

7. Unit calibrated per ACS-20.

Appendix C, Page 12 of 13

ID:CAL112-3607494440.057+0

CALIBRATION CERT #1862.01

Page 2 of 2

ACCREDITED

3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

ID:CAL112-3607494440.057+0

Appendix C. Page 13 of 13

APPENDIX D: PREDICTED NOISE LEVELS

Receiver	Noise L	evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R1	Residential	В	66	2	63.5	62.6	-0.9	Ν
R2	Residential	В	66	1	65.9	65.0	-0.9	N
R3	Residential	В	66	1	65.6	64.7	-0.9	N
R4	Residential	В	66	1	65.7	64.8	-0.9	N
R5	Residential	В	66	2	64.8	64.0	-0.8	N
R6	Residential	В	66	1	64.8	63.8	-1.0	N
R7	Residential	В	66	1	65.1	64.3	-0.8	N
R8	Residential	В	66	2	64.8	64.0	-0.8	N
R9	Residential	В	66	2	64.5	63.7	-0.8	N
R10	Residential	В	66	2	64.5	63.7	-0.8	Ν
R11	Residential	В	66	1	64.4	63.5	-0.9	N
R12	Residential	В	66	1	63.8	63.0	-0.8	N
R13	Residential	В	66	1	61.5	60.7	-0.8	Ν
R20	Residential	В	66	2	58.0	59.0	1.0	Ν
R21	Residential	В	66	2	58.2	57.6	-0.6	Ν
R22	Residential	В	66	2	58.6	58.6	0.0	Ν
R23	Residential	В	66	2	58.9	59.1	0.2	Ν
R24	Residential	В	66	2	60.2	60.5	0.3	Ν
R25	Residential	В	66	1	59.2	59.2	0.0	Ν
R26	Residential	В	66	1	58.4	58.6	0.2	Ν
R27	Residential	В	66	1	59.5	59.7	0.2	Ν
R28	Residential	В	66	1	59.7	59.6	-0.1	Ν
R29	Residential	В	66	1	59.6	59.6	0.0	Ν
R30	Residential	В	66	1	60.1	60.0	-0.1	N
R31	Residential	В	66	1	59.8	59.8	0.0	N
R32	Residential	В	66	1	60.1	59.4	-0.7	N

Appendix D - Predicted Noise Levels, dB(A) Leq(1h)

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R33	Residential	В	66	1	60.2	59.6	-0.6	N
R34	Residential	В	66	1	60.0	59.6	-0.4	N
R35	Residential	В	66	2	60.1	59.5	-0.6	N
R36	Residential	В	66	2	59.9	59.5	-0.4	N
R37	Residential	В	66	2	59.1	58.8	-0.3	N
R38	Residential	В	66	1	59.5	59.3	-0.2	N
R39	Residential	В	66	2	59.7	59.3	-0.4	N
R40	Residential	В	66	2	61.8	59.5	-2.3	N
R41	Residential	В	66	2	60.7	60.1	-0.6	N
R42	Residential	В	66	2	60.4	60.2	-0.2	N
R43	Residential	В	66	2	59.9	59.6	-0.3	N
R44	Residential	В	66	1	60.6	60.0	-0.6	N
R45	Residential	В	66	1	60.3	59.9	-0.4	N
R46	Residential	В	66	2	60.1	59.7	-0.4	N
R47	Residential	В	66	3	60.6	60.0	-0.6	N
R48	Community Garden	С	66	1	64.7	64.4	-0.3	N
R49	Church	D	51	4	50.0	47.5	-2.5	N
R50	Church	D	51	3	49.5	47.3	-2.2	N
R51	Residential	В	66	1	71.4	70.5	-0.9	Y
R52	Residential	В	66	1	70.9	70.2	-0.7	Y
R53	Residential	В	66	1	72.1	71.2	-0.9	Y
R54	Residential	В	66	2	72.4	71.6	-0.8	Y
R55	Residential	В	66	1	71.9	71.6	-0.3	Y
R70	Residential	В	66	1	70.1	70.4	0.3	Y
R71	Residential	В	66	1	68.4	68.3	-0.1	Y
R72	Residential	В	66	2	73.5	73.1	-0.4	Y
R73	Residential	В	66	1	71.6	71.0	-0.6	Y

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R74	Residential	В	66	4	70.9	70.5	-0.4	Y
R75	Residential	В	66	4	71.4	71.6	0.2	Y
R76	Residential	В	66	2	72.0	72.5	0.5	Y
R77	Residential	В	66	1	72.9	73.3	0.4	Y
R78	Residential	В	66	2	68.2	68.2	0.0	Y
R79	Residential	В	66	1	68.3	67.9	-0.4	Y
R80	Residential	В	66	2	68.5	67.7	-0.8	Y
R81	Residential	В	66	2	68.7	66.7	-2.0	Y
R82	Residential	В	66	2	67.4	65.2	-2.2	N
R83	Residential	В	66	1	68.0	65.1	-2.9	N
R84	Residential	В	66	1	68.5	66.6	-1.9	Y
R85	Residential	В	66	1	68.9	68.1	-0.8	Y
R86	Church	D	51	4	48.8	49.1	0	N
R87	Residential	В	66	2	73.3	73.6	0.3	Y
R88	Residential	В	66	1	73.4	73.7	0.3	Y
R89	Residential	В	66	1	73.5	73.8	0.3	Y
R90	Residential	В	66	1	73.2	73.6	0.4	Y
R91	Residential	В	66	1	72.9	73.5	0.6	Y
R92	Residential	В	66	1	72.3	71.5	-0.8	Y
R93	Residential	В	66	1	72.6	71.8	-0.8	Y
R94	Residential	В	66	2	72.0	71.2	-0.8	Y
R95	Residential	В	66	2	69.5	69.1	-0.4	Y
R96	Residential	В	66	1	70.3	70.3	0.0	Y
R97	Residential	В	66	2	70.5	70.6	0.1	Y
R98	Residential	В	66	2	69.9	70.2	0.3	Y
R99	Residential	В	66	1	69.6	69.6	0.0	Y
R100	Residential	В	66	2	66.5	65.7	-0.8	N
R101	Residential	В	66	1	67.6	65.9	-1.7	N

Receiver	Noise L	evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R102	Residential	В	66	2	66.0	65.5	-0.5	N
R103	Residential	В	66	1	65.7	65.0	-0.7	N
R104	Residential	В	66	2	65.5	65.0	-0.5	N
R105	Residential	В	66	1	66.1	65.0	-1.1	N
R106	Church	D	51	4	48.6	46.6	-2.0	N
R106A	School Playground	с	66	12	67.1	66.8	-0.3	Y
R107	Institutional	D	51	1	48.8	48.5	-0.3	N
R108	Residential	В	66	2	67.9	67.4	-0.5	Y
R109	Residential	В	66	1	67.0	66.5	-0.5	Y
R110	Residential	В	66	2	67.2	66.3	-0.9	Y
R111	Church	D	51	3	49.1	47.8	-1.3	N
R112	Church	D	51	1	47.4	45.3	-2.1	N
R113	Legacy Learning Center	D	51	12	44.6	43.7	-0.9	N
R120-1	Monon Trail	С	66	2	70.3	65.6	-4.7	N
R120-2	Monon Trail	С	66	2	69.5	64.2	-5.3	N
R120-3	Monon Trail	С	66	2	68.9	69.2	0.3	Y
R120-5	Monon Trail	С	66	2	66.7	65.1	-1.6	N
R120-6	Monon Trail	С	66	2	64.9	63.4	-1.5	N
R121	Soccer Fields	С	66	1	64.3	62.3	-2.0	N
R122	Soccer Fields	С	66	6	64.0	61.5	-2.5	N
R123	Residential	В	66	6	61.2	59.3	-1.9	N
R124	Residential	В	66	1	61.1	59.4	-1.7	N
R125	Residential	В	66	1	61.0	59.4	-1.6	N
R126	Residential	В	66	2	61.8	59.0	-2.8	N
R127	Residential	В	66	2	62.2	58.9	-3.3	N
R128	Residential	В	66	2	60.7	58.8	-1.9	N

Receiver	Noise I	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R129	Residential	В	66	1	61.4	58.2	-3.2	N
R130	Residential	В	66	1	61.8	57.7	-4.1	N
R131	Residential	В	66	2	62.9	57.6	-5.3	N
R132	Residential	В	66	1	60.7	58.2	-2.5	N
R133	Residential	В	66	1	61.6	58.1	-3.5	N
R134	Residential	В	66	2	62.5	58.2	-4.3	N
R135	Residential	В	66	2	63.4	58.8	-4.6	N
R136	Residential	В	66	1	63.8	58.5	-5.3	N
R137	Residential	В	66	2	64.4	58.6	-5.8	N
R138	Residential	В	66	2	60.1	59.0	-1.1	N
R139	Residential	В	66	2	61.0	59.4	-1.6	N
R140	Residential	В	66	1	61.9	60.0	-1.9	N
R141	Residential	В	66	1	62.9	60.7	-2.2	N
R142	Residential	В	66	2	61.6	60.5	-1.1	N
R143	Residential	В	66	1	65.2	62.8	-2.4	N
R144	Residential	В	66	1	65.0	62.9	-2.1	N
R145	Residential	В	66	1	64.5	62.6	-1.9	N
R146	Residential	В	66	1	64.0	62.4	-1.6	N
R147	Residential	В	66	1	67.2	63.9	-3.3	N
R148	Residential	В	66	1	68.0	63.9	-4.1	N
R149	Residential	В	66	1	69.0	63.9	-5.1	N
R150	Residential	В	66	1	68.5	65.1	-3.4	N
R151	Residential	В	66	1	62.4	61.0	-1.4	N
R152	Residential	В	66	1	61.4	60.9	-0.5	N
R153	Residential	В	66	1	70.6	65.5	-5.1	N
R154	Residential	В	66	1	70.0	66.4	-3.6	Y
R155	Residential	В	66	1	68.6	66.0	-2.6	Y
R156	Residential	В	66	2	67.2	65.3	-1.9	N

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R156-2	Residential	В	66	2	68.7	66.0	-2.7	Y
R157	Residential	В	66	2	65.7	64.3	-1.4	N
R157-2	Residential	В	66	2	66.6	64.6	-2.0	N
R158	Residential	В	66	2	57.9	56.9	-1.0	N
R159	Residential	В	66	2	63.5	63.0	-0.5	N
R160	Residential	В	66	2	65.1	64.1	-1.0	N
R161 (HP3)	Non-Profit	С	66	1	70.4	66.7	-3.7	Y
R162	Non-Profit	С	66	1	57.9	56.6	-1.3	N
R162-1	Non-Profit	D	51	1	49.0	45.9	-3.1	N
R164	Residential	В	66	3	63.4	62.6	-0.8	N
R165	Residential	В	66	3	61.0	60.8	-0.2	N
R166	Residential	В	66	3	61.6	61.5	-0.1	N
R167	Residential	В	66	3	63.6	63.2	-0.4	N
R168	Residential	В	66	2	64.4	63.6	-0.8	N
R169	Residential	В	66	2	66.5	65.2	-1.3	N
R170	Residential	В	66	1	68.6	64.9	-3.7	N
R171	Residential	В	66	1	69.2	64.3	-4.9	N
R172	Residential	В	66	2	66.4	64.5	-1.9	N
R173	Residential	В	66	2	65.8	64.5	-1.3	N
R174	Residential	В	66	2	64.7	63.9	-0.8	N
R175	Residential	В	66	2	64.3	63.5	-0.8	N
R176	Residential	В	66	1	63.6	63.2	-0.4	N
R177	Residential	В	66	1	61.0	61.3	0.3	N
R178	Residential	В	66	1	60.4	60.7	0.3	N
R179	Residential	В	66	2	60.2	60.0	-0.2	N
R180	Residential	В	66	2	61.5	61.3	-0.2	N
R181	Residential	В	66	2	62.9	62.6	-0.3	N
R182	Residential	В	66	2	64.2	63.5	-0.7	N

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R183	Residential	В	66	2	66.3	64.5	-1.8	N
R184	Residential	В	66	2	68.8	64.5	-4.3	N
R185	Residential	В	66	2	68.9	64.5	-4.4	N
R186	Residential	В	66	2	69.0	64.5	-4.5	N
R187	Residential	В	66	2	68.3	64.6	-3.7	N
R188	Residential	В	66	2	66.2	64.8	-1.4	N
R189	Residential	В	66	2	64.5	64.0	-0.5	N
R190	Residential	В	66	2	63.6	63.5	-0.1	N
R191	Residential	В	66	1	63.4	63.1	-0.3	Ν
R191-2	Residential	В	66	1	65.9	64.5	-1.4	N
R192	Residential	В	66	1	63.3	63.0	-0.3	N
R192-2	Residential	В	66	1	65.7	64.4	-1.3	Ν
R193	Residential	В	66	2	61.9	61.8	-0.1	N
R200	Residential	В	66	1	59.7	59.2	-0.5	N
R201	Residential	В	66	1	59.5	59.0	-0.5	N
R202	Residential	В	66	1	59.4	59.1	-0.3	N
R203	Residential	В	66	1	59.4	59.0	-0.4	N
R204	Residential	В	66	1	60.3	59.0	-1.3	Ν
R205	Church	С	66	1	54.5	52.4	-2.1	N
R205-1	Church	D	51	16	47.4	44.8	-2.6	N
R206 (HP4)	Non-Profit	С	66	32	65.1	63.6	-1.5	Ν
R207	Residential	В	66	1	67.3	64.8	-2.5	N
R208	Residential	В	66	1	67.3	64.9	-2.4	N
R220	Office Building	E	71	0	69.3	67.1	-2.2	N
R222 (HP6)	Residential	В	66	4	69.3	66.5	-2.8	Y
R224 (HP7)	Residential	В	66	1	66.3	63.8	-2.5	N
R225	Office Building	E	71	1	70.0	68.1	-1.9	N

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R226	Residential	В	66	1	70.7	68.2	-2.5	Y
R227	Residential	В	66	2	71.7	69.3	-2.4	Y
R228	Residential	В	66	1	66.4	64.3	-2.1	N
R229	Residential	В	66	1	58.8	56.8	-2.0	N
R300	Residential	В	66	2	62.1	59.6	-2.5	N
R301	Residential	В	66	1	66.8	64.3	-2.5	N
R302	Residential	В	66	2	66.9	63.7	-3.2	N
R303	Residential	В	66	2	66.0	61.8	-4.2	N
R306	Residential	В	66	1	61.4	60.4	-1.0	N
R307	Residential	В	66	2	62.6	61.5	-1.1	N
R308	Residential	В	66	2	62.7	61.5	-1.2	N
R309	Residential	В	66	1	62.6	61.7	-0.9	N
R310	Residential	В	66	2	62.6	61.6	-1.0	N
R311	Residential	В	66	2	62.3	61.0	-1.3	N
R312	Residential	В	66	1	60.2	59.3	-0.9	N
R313	Residential	В	66	2	59.6	58.9	-0.7	N
R320	Residential	В	66	1	61.8	60.1	-1.7	N
R321	Residential	В	66	4	60.3	59.4	-0.9	N
R322	Residential	В	66	2	67.7	65.0	-2.7	N
R323	Residential	В	66	3	67.1	64.4	-2.7	N
R324	Residential	В	66	3	68.4	65.0	-3.4	N
R325	Residential	В	66	2	67.8	64.8	-3.0	N
R326	Office Building	E	71	0	70.1	68.4	-1.7	N
R327	Residential	В	66	5	64.9	62.9	-2.0	N
R328	Residential	В	66	2	62.6	61.0	-1.6	N
R329	Residential	В	66	1	62.5	60.0	-2.5	N
R330	Residential	В	66	1	62.7	59.9	-2.8	N

Receiver	Noise L	_evel, dB(A) Lo	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R331	Residential	В	66	2	62.8	60.8	-2.0	N
R332	Residential	В	66	2	60.8	60.0	-0.8	N
R333	Residential	В	66	4	62.6	61.8	-0.8	N
R334	Residential	В	66	1	63.2	61.9	-1.3	N
R335	Residential	В	66	2	62.6	61.0	-1.6	N
R336	Residential	В	66	2	62.6	61.4	-1.2	N
R337	Residential	В	66	8	60.2	59.5	-0.7	N
R338	Residential	В	66	2	62.1	61.2	-0.9	N
R339	Residential	В	66	1	61.5	60.6	-0.9	N
R340	Residential	В	66	2	61.3	60.5	-0.8	N
R341	Residential	В	66	2	61.1	60.5	-0.6	N
R342	Residential	В	66	4	56.6	56.6	0.0	N
R343	Residential	В	66	7	60.8	60.5	-0.3	N
R350	Residential	В	66	5	70.5	65.8	-4.7	N
R351	Residential	В	66	1	64.5	64.2	-0.3	N
R352	Residential	В	66	2	65.4	64.8	-0.6	N
R353	Residential	В	66	1	64.9	64.0	-0.9	N
R354	Residential	В	66	2	65.1	63.0	-2.1	N
R355	Residential	В	66	1	64.9	62.8	-2.1	N
R357	Residential	В	66	1	63.8	61.6	-2.2	N
R358	Residential	В	66	2	61.9	61.2	-0.7	N
R359	Residential	В	66	2	61.0	60.2	-0.8	N
R360	Residential	В	66	2	57.8	57.4	-0.4	N
R361	Residential	В	66	3	59.6	59.4	-0.2	N
R362	Residential	В	66	3	59.5	59.0	-0.5	N
R363	Residential	В	66	3	57.0	57.5	0.5	N
R364	Residential	В	66	3	58.6	57.9	-0.7	N
R365	Residential	В	66	3	57.3	56.4	-0.9	N

Receiver	Noise I	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R366	Residential	В	66	2	58.0	58.0	0.0	N
R367	Residential	В	66	2	58.5	58.6	0.1	N
R368	Residential	В	66	2	57.3	57.5	0.2	N
R369	Residential	В	66	2	57.3	57.5	0.2	N
R370	Residential	В	66	2	57.4	57.4	0.0	N
R371	Residential	В	66	2	57.4	57.3	-0.1	N
R372	Residential	В	66	2	70.1	63.1	-7.0	N
R373	Residential	В	66	2	70.0	63.6	-6.4	N
R374	Residential	В	66	2	70.0	64.7	-5.3	N
R375	Residential	В	66	2	69.7	65.0	-4.7	N
R376	Residential	В	66	4	70.2	66.6	-3.6	Y
R377	Residential	В	66	4	71.5	66.7	-4.8	Y
R378	Residential	В	66	4	71.5	66.7	-4.8	Y
R379	Residential	В	66	4	71.6	66.8	-4.8	Y
R380	Residential	В	66	6	59.4	58.7	-0.7	N
R381	Residential	В	66	6	60.8	59.4	-1.4	N
R382	Residential	В	66	4	60.1	58.7	-1.4	N
R383	Residential	В	66	4	56.5	54.9	-1.6	N
R384	Residential	В	66	4	54.0	52.9	-1.1	N
R385	Residential	В	66	4	61.5	59.9	-1.6	N
R386	Residential	В	66	5	59.6	58.1	-1.5	N
R387	Residential	В	66	2	54.6	54.9	0.3	N
R387-2	Residential	В	66	2	59.1	59.5	0.4	N
R388	Residential	В	66	2	60.5	59.1	-1.4	N
R388-2	Residential	В	66	2	63.8	61.8	-2.0	N
R389	Residential	В	66	5	56.9	55.6	-1.3	N
R390	Residential	В	66	1	69.2	65.0	-4.2	N
R391	Residential	В	66	1	64.5	62.4	-2.1	N

Receiver	Noise L	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R392	Church	D	51	4	44.2	42.0	-2.2	N
R393	Church	D	51	3	37.6	37.6	0.0	N
R394	Restaurant	E	71	1	66.3	64.2	-2.1	N
R395	Residential	В	66	6	67.1	64.7	-2.4	N
R396	Residential	В	66	1	58.1	56.8	-1.3	N
R397	Residential	В	66	1	66.7	63.5	-3.2	N
R397-2	Residential	В	66	2	68.0	64.5	-3.5	N
R398	Office Buidling	E	71	1	59.8	58.9	-0.9	N
R399	Residential	В	66	3	52.7	52.9	0.2	N
R400	Residential	В	66	1	69.9	69.5	-0.4	Y
R401	Residential	В	66	1	70.0	69.4	-0.6	Y
R402	Residential	В	66	1	69.4	69.4	0.0	Y
R403	Residential	В	66	6	69.6	69.6	0.0	Y
R403-2	Residential	В	66	6	71.6	71.5	-0.1	Y
R403-3	Residential	В	66	6	72.5	72.0	-0.5	Y
R404	Residential	В	66	6	67.5	67.9	0.4	Y
R404-2	Residential	В	66	6	68.9	69.1	0.2	Y
R404-3	Residential	В	66	6	70.1	70.0	-0.1	Y
R405	Residential	В	66	6	59.6	63.3	3.7	N
R405-2	Residential	В	66	6	62.3	64.9	2.6	N
R405-3	Residential	В	66	6	64.9	65.4	0.5	N
R406	Residential	В	66	6	60.2	61.8	1.6	N
R406-2	Residential	В	66	6	61.8	63.0	1.2	N
R406-3	Residential	В	66	6	64.2	63.9	-0.3	N
R407	Restaurant	Е	71	1	60.0	61.6	1.6	N
R408	Residential	В	66	4	60.2	61.0	0.8	N
R409	Residential	В	66	1	60.0	60.9	0.9	N

Receiver	Noise I	_evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R410-1	Residential	В	66	4	62.3	64.3	2.0	N
R410-2	Residential	В	66	4	66.3	67.3	1.0	Y
R410-3	Residential	В	66	4	67.4	68.3	0.9	Y
R410-4	Residential	В	66	4	68.3	69.0	0.7	Y
R411-1	Residential	В	66	4	63.6	65.3	1.7	N
R411-2	Residential	В	66	4	66.4	67.4	1.0	Y
R411-3	Residential	В	66	4	67.6	68.6	1.0	Y
R411-4	Residential	В	66	4	68.7	69.5	0.8	Y
R412-1	Residential	В	66	4	64.6	65.9	1.3	N
R412-2	Residential	В	66	4	66.5	67.7	1.2	Y
R412-3	Residential	В	66	4	67.9	68.9	1.0	Y
R412-4	Residential	В	66	4	69.1	70.0	0.9	Y
R413-1	Residential	В	66	4	65.2	66.1	0.9	Y
R413-2	Residential	В	66	4	66.6	68.0	1.4	Y
R413-3	Residential	В	66	4	68.2	69.3	1.1	Y
R413-4	Residential	В	66	4	69.5	70.4	0.9	Y
R414-1	Residential	В	66	4	50.5	51.6	1.1	N
R414-2	Residential	В	66	4	50.8	50.9	0.1	N
R414-3	Residential	В	66	4	51.3	51.2	-0.1	N
R414-4	Residential	В	66	4	54.6	55.0	0.4	N
R415-1	Residential	В	66	4	46.8	48.1	1.3	N
R415-2	Residential	В	66	4	47.8	48.7	0.9	N
R415-3	Residential	В	66	4	49.5	50.2	0.7	N
R415-4	Residential	В	66	4	53.0	53.7	0.7	N
R416-1	Residential	В	66	4	48.0	49.0	1.0	N
R416-2	Residential	В	66	4	50.0	50.8	0.8	N
R416-3	Residential	В	66	4	51.2	51.8	0.6	N
R416-4	Residential	В	66	4	55.5	56.0	0.5	N

Receiver ID	Noise Level, dB(A) Leq(1h)				Noise Level			
	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R417-1	Residential	В	66	4	46.7	48.5	1.8	N
R417-2	Residential	В	66	4	48.6	49.5	0.9	N
R417-3	Residential	В	66	4	51.1	52.0	0.9	N
R417-4	Residential	В	66	4	55.5	56.1	0.6	N
R418	Residential	В	66	1	52.2	53.0	0.8	N
R419	Residential	В	66	2	57.5	58.8	1.3	N
R419-2	Residential	В	66	2	64.2	65.8	1.6	N
R419-3	Residential	В	66	2	67.2	68.5	1.3	Y
R419-4	Residential	В	66	2	68.6	69.8	1.2	Y
R419-5	Residential	В	66	4	46.6	47.1	0.5	N
R419-6	Residential	В	66	4	53.8	54.6	0.8	N
R420	Residential	В	66	1	58.5	59.4	0.9	N
R421-1	Residential	В	66	2	59.9	60.5	0.6	N
R421-2	Residential	В	66	2	61.9	62.6	0.7	N
R421-3	Residential	В	66	2	66.8	67.3	0.5	Y
R421-4	Residential	В	66	2	68.5	69.0	0.5	Y
R421-5	Residential	В	66	2	69.1	69.5	0.4	Y
R421-6	Residential	В	66	2	69.4	69.8	0.4	Y
R422	Residential	В	66	1	57.2	57.8	0.6	N
R423	Residential	В	66	2	60.7	61.8	1.1	N
R424	Residential	В	66	2	67.0	66.7	-0.3	Y
R425	Residential	В	66	3	67.3	67.2	-0.1	Y
R426	Residential	В	66	3	64.3	64.5	0.2	N
R427	Residential	В	66	1	62.5	63.2	0.7	N
R428	Residential	В	66	1	62.6	63.3	0.7	N
R429	Residential	В	66	1	62.7	63.4	0.7	N
R430	Residential	В	66	1	62.8	63.5	0.7	N
R431	Residential	В	66	1	62.7	63.2	0.5	N

Receiver	Noise L	.evel, dB(A) Le	eq(1h)		Noise	Level		
ID	Description	Category**	Criteria, L _{eq} (1h)	Receptors	2017 Leq(1h)	2041 Leq(1h)	Change	Impact
R432	Residential	В	66	1	62.9	63.5	0.6	N
R433	Residential	В	66	1	62.8	63.3	0.5	N
R434	Residential	В	66	1	61.6	62.0	0.4	N
R435	Residential	В	66	2	61.9	62.0	0.1	N
R436	Residential	В	66	2	62.1	62.1	0.0	N
R437	Residential	В	66	2	62.1	62.0	-0.1	N
R440	Residential	В	66	2	67.7	66.6	-1.1	Y
R441	Residential	В	66	8	64.1	64.4	0.3	N
R442	Residential	В	66	1	66.5	66.1	-0.4	Y
R443	Residential	В	66	1	64.2	64.8	0.6	N
R444	Residential	В	66	1	65.3	64.9	-0.4	N
R445	Residential	В	66	2	59.6	59.2	-0.4	N
R446	Residential	В	66	3	58.8	58.7	-0.1	N
R447	The Nature Conservancy	С	66	1	59.3	59.3	0.0	N
R448	Residential	В	66	2	58.2	57.9	-0.3	N
R449	Indiana City Brewery	E	71	1	51.9	51.7	-0.2	N
R450	Sun King Brewery	E	71	1	53.3	53.5	0.2	N
R451	Easley Winery	E	71	1	58.2	58.5	0.3	N
R452	The Great Divide	E	71	1	67.8	66.9	-0.9	N
R453	Cunningham Restaurant Group Patio	E	71	1	63.3	64.9	1.6	N
R454	Black Market Outdoor Seating	E	71	1	65.8	66.4	0.6	N
R455	Indiana Cultural Trail	С	66	2	66.8	67.8	1.0	Y

APPENDIX E: NOISE BARRIER ANALYSIS RESULTS

NB1 - NB I-65 EB I-70 in the southeast quadrant of the interchange along the I-70 EB ramp from the I-65 overpass to approximately 250 feet east of the I-70 EB overpass of Lewis Street. The second segment extends from approximately 10th Street to the I-65 NB over I-70 EB overpass. The third segment extends from the I-65 SB/I-70 EB overpass to the I-65 SB/I-70 EB over Lewis Street overpass. This noise barrier examines abatement of future noise levels at receivers R32-R47, R120-1 - R120-3 and R113. (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R32	В	66	1	2	60.1	59.4	-0.7	57.6	1.8	No	No	No	No
R33	В	66	1	2	60.2	59.6	-0.6	57.8	1.8	No	No	No	No
R34	В	66	1	2	60.0	59.6	-0.4	57.7	1.9	No	No	No	No
R35	В	66	2	2	60.1	59.5	-0.6	57.4	2.1	No	No	No	No
R36	В	66	2	2	59.9	59.5	-0.4	57.6	1.9	No	No	No	No
R37	В	66	2	2	59.1	58.8	-0.3	56.5	2.3	No	No	No	No
R38	В	66	1	2	59.5	59.3	-0.2	56.8	2.5	No	No	No	No
R39	В	66	2	2	59.7	59.3	-0.4	56.3	3.0	No	No	No	No
R40	В	66	2	2	61.8	59.5	-2.3	56.0	3.5	No	No	No	No
R41	В	66	2	2	60.7	60.1	-0.6	55.5	4.6	No	No	No	No
R42	В	66	2	2	60.4	60.2	-0.2	56.6	3.6	No	No	No	No
R43	В	66	2	2	59.9	59.6	-0.3	55.5	4.1	No	No	No	No
R44	В	66	1	2	60.6	60.0	-0.6	55.3	4.7	No	No	No	No
R45	В	66	1	2	60.3	59.9	-0.4	55.5	4.4	No	No	No	No
R46	В	66	2	2	60.1	59.7	-0.4	55.7	4.0	No	No	No	No
R47	В	66	3	2	60.5	60.0	-0.5	55.8	4.2	No	No	No	No
R120-1	С	66	2	1	70.3	65.6	-4.7	61.2	4.4	No	No	No	No
R120-2	С	66	2	1	69.5	64.2	-5.3	58.6	5.6	No	Yes	No	No
R120-3	С	66	2	1	68.9	69.2	0.3	61.3	7.9	Yes	Yes	Yes	Yes
R113	D	51	24	2	39.6	38.7	-0.9	34.2	4.5	No	No	No	No
						Noise levels that approach or exceed the NAC.							

Feasibility						
Number of impacted receptors		Number of impacte receiving a 5 dBA		% of impacted receptors receiving a 5 dBA reduction	Does the noise barrier design achieve a 5 dBA reduction at a majority (>50%) of impacted receptors?	Yes
2		2		100%		
Reasonability		· ·				
Design Goal						
First row receptors		First row receptors rec	eiving 7 dBA or	% of benefited first row	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row	
First row receptors		more reduc	tion	receptors with a 7 dBA	receptors?	No
6		2		33%	Tecepiors?	
Cost-effectiveness						
	Noise	Barrier Length (feet)		1,925		
	Noise	Barrier Height (feet)		20		
TN	M Area of Pr	f Proposed Barrier, Sqft. 38,487		38,487	Is the cost per benefited receptor less than or equal to \$25,000 per benefited	No
Estimated N	loise Barrier	r Cost (\$30.00 x Sqft.) \$1,154,610		\$1,154,610	receptor receiving a minimum reduction of 5 dBA?	NO
Number of Benefited Receptors/Dwelling Units 4			4			
	Cost per receptor \$288,653					

NB2 - EB I-70 immediately behind the concrete safety barrier. This barrier segment extends from approxiamtely Columbia to Arsenal Streets. This noise barrier examines abatement of future noise levels at residential receivers R51 through R55, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R50	D	51	2	1	49.5	47.3	-2.2	45.9	1.4	No	No	No	No
R51	В	66	1	1	71.4	70.5	-0.9	65.5	5.0	Yes	Yes	Yes	No
R52	В	66	1	2	70.9	70.2	-0.7	65.4	4.8	Yes	No	No	No
R53	В	66	1	2	72.1	71.2	-0.9	65.3	5.9	Yes	Yes	Yes	No
R54	В	66	2	1	72.4	71.6	-0.8	64.6	7.0	Yes	Yes	Yes	Yes
R55	В	66	1	1	71.9	71.6	-0.3	66.6	5.0	Yes	Yes	Yes	No
						Noise levels that approach or exceed the NAC.							
Feasibility													
	mber of impacted receptorsNumber of impacted receptors receiving a 5 dBA reduction% of impacted receptors receiving 5 dBA reduction					Does the no		ign achieve a 5 of impacted rec		t a majority	Y	es	
6 Reasonability			5			83%	<u> </u>						

Reasonability						
Design Goal						
First row receptors		First row receptors receiptors	iving 7 dBA or	% of benefited first row receptors	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row	
First fow receptors	6 a vit				receptors?	No
6	6 2				Teceptors?	
Cost-effectiveness						
	No	ise Barrier Length (feet)		600		
	Noise Barrier Height (feet)		10-12			
	TNM Area of	Proposed Barrier, Sqft.		6,802	Is the cost per benefited receptor less than or equal to \$30,000 per benefited	No
Estimated Noise Barrier Cost (\$30.00 x Sqft.) \$204,060				\$204,060	receptor receiving a minimum reduction of 5 dBA?	NO
Number of Benefited Receptors/Dwelling Units				5]	1
Cost per receptor				\$40,812		1

NB3E - WB I-70 along the edge of shoulder from the Lawrence Street overpass to the Commerce Drive overpass. This noise barrier examines abatement of future noise levels at residential receivers R70 through R112, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R70	В	66	1	1	70.1	70.4	0.3	69.8	0.6	Yes	No	No	No
R71	В	66	1	2	68.4	68.3	-0.1	67.6	0.7	Yes	No	No	No
R72	В	66	2	1	73.5	73.1	-0.4	70.6	2.5	Yes	No	No	No
R73	В	66	1	1	71.6	71.0	-0.6	66.5	4.5	Yes	No	No	No
R74	В	66	4	1	70.9	70.5	-0.4	65.5	5.0	Yes	Yes	Yes	No
R75	В	66	4	1	71.4	71.6	0.2	64.9	6.7	Yes	Yes	Yes	No
R76	В	66	2	1	72.0	72.5	0.5	64.8	7.7	Yes	Yes	Yes	Yes
R77	В	66	1	1	72.9	73.3	0.4	64.9	8.4	Yes	Yes	Yes	Yes
R78	В	66	2	2	68.2	68.2	0.0	67.4	0.8	Yes	No	No	No
R79	В	66	1	2	68.3	67.9	-0.4	66.9	1.0	Yes	No	No	No
R80	В	66	2	2	68.5	67.7	-0.8	66.5	1.2	Yes	No	No	No
R81	В	66	2	2	68.7	66.7	-2.0	65.0	1.7	Yes	No	No	No
R82	В	66	2	2	67.4	65.2	-2.2	62.9	2.3	No	No	No	No
R83	В	66	1	2	68.0	65.1	-2.9	62.1	3.0	No	No	No	No
R84	В	66	1	2	68.5	66.6	-1.9	60.9	5.7	Yes	Yes	Yes	No
R85	В	66	1	2	68.9	68.1	-0.8	62.3	5.8	Yes	Yes	Yes	No
R86	D	66	4	1	48.8	49.1	0.3	40.9	8.2	No	Yes	No	Yes
R87	В	66	2	1	73.3	73.6	0.3	65.7	7.9	Yes	Yes	Yes	Yes
R88	В	66	1	1	73.4	73.7	0.3	65.8	7.9	Yes	Yes	Yes	Yes
R89	В	66	1	1	73.5	73.8	0.3	66.3	7.5	Yes	Yes	Yes	Yes
R90	В	66	1	1	73.2	73.6	0.4	65.9	7.7	Yes	Yes	Yes	Yes
R91	В	66	1	1	72.9	73.5	0.6	65.7	7.8	Yes	Yes	Yes	Yes
R92	В	66	1	1	72.3	71.5	-0.8	65.4	6.1	Yes	Yes	Yes	No
R93	В	66	1	1	72.6	71.8	-0.8	66.2	5.6	Yes	Yes	Yes	No
R94	В	66	2	1	72.0	71.2	-0.8	66.0	5.2	Yes	Yes	Yes	No
R95	В	66	2	2	69.5	69.1	-0.4	64.1	5.0	Yes	Yes	Yes	No
R96	В	66	1	2	70.3	70.3	0.0	65.2	5.1	Yes	Yes	Yes	No
R97	В	66	2	2	70.5	70.6	0.1	65.5	5.1	Yes	Yes	Yes	No
R98	В	66	2	2	69.9	70.2	0.3	64.8	5.4	Yes	Yes	Yes	No
R99	В	66	1	2	69.6	69.6	0.0	64.6	5.0	Yes	Yes	Yes	No
R100	В	66	2	2	66.5	65.7	-0.8	65.2	0.5	No	No	No	No
R101	В	66	1	1	67.6	65.9	-1.7	65.6	0.3	No	No	No	No
R102	В	66	2	2	66.0	65.5	-0.5	65.1	0.4	No	No	No	No
R112	D	66	1	2	47.4	45.3	-2.1	45.0	0.3	No	No	No	No
						Noise levels that approach or exceed the NAC.							

Feasibility				
Number of impacted receptors	Number of impacted receptors receiving a 5 dBA reduction	% of impacted receptors receiving a 5 dBA reduction	Does the noise barrier design achieve a 5 dBA reduction at a majority (>50%) of impacted receptors?	Yes
43	43	100%		

Reasonability						
Design Goal						
First row receptors		First row receptors receivin	g 7 dBA or	% of benefited first row receptors	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row	
Thist fow receptors		more reduction		with a 7 dBA reduction	receptors?	Yes
25		13		52%	Teceptors:	
Cost-effectiveness		•			•	
	Noise	Barrier Length (feet)		1,615		
	Noise Barrier Height (feet)			10-18		
TI	NM Area of Pr	oposed Barrier, Sqft.		23,031	Is the cost per benefited receptor less than or equal to \$30,000 per	Yes
Estimated	Noise Barrier	Cost (\$30.00 x Sqft.)		\$690,930	benefited receptor receiving a minimum reduction of 5 dBA?	Tes
Number of I	Benefited Rece	eptors/Dwelling Units		35		
		Cost per receptor		\$19,741		

NB3W - WB I-70 along the edge of shoulder from the Commerce Ave overpass to the Lewis Street/Monon overpass. This noise barrier examines abatement of future noise levels at residential receivers R100 through R112, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R100	В	66	2	2	66.5	65.7	-0.8	65.3	0.4	No	No	No	No
R101	В	66	1	1	67.6	65.9	-1.7	65.3	0.6	No	No	No	No
R102	В	66	2	2	66.0	65.5	-0.5	64.5	1.0	No	No	No	No
R103	В	66	1	2	65.7	65.0	-0.7	63.5	1.5	No	No	No	No
R104	В	66	2	2	65.5	65.0	-0.5	63.4	1.6	No	No	No	No
R105	В	66	1	2	66.1	65.0	-1.1	63.2	1.8	No	No	No	No
R106	D	51	1	1	48.6	46.6	-2.0	41.6	5.0	No	Yes	No	No
R106A	С	66	12	1	67.1	66.8	-0.3	59.8	7.0	Yes	Yes	Yes	Yes
R107	D	51	1	1	48.8	48.5	-0.3	40.9	7.6	No	Yes	No	Yes
R108	В	66	2	1	67.9	67.4	-0.5	60.5	6.9	Yes	Yes	Yes	No
R109	В	66	1	2	67.0	66.5	-0.5	60.6	5.9	Yes	Yes	Yes	No
R110	В	66	2	2	67.2	66.3	-0.9	60.5	5.8	Yes	Yes	Yes	No
R111	D	51	1	1	49.1	47.8	-1.3	40.9	6.9	No	Yes	No	No
R112	D	51	1	2	47.4	45.3	-2.1	45.2	0.1	No	No	No	No
						Noise levels that approach or exceed the NAC.							

Feasibility						
Number of impacted receptors		Number of impacted receptors i dBA reduction	receiving a 5	% of impacted receptors receiving a 5 dBA reduction	Does the noise barrier design achieve a 5 dBA reduction at a majority (>50%) of impacted receptors?	Yes
17		17		100%		
Reasonability						
Design Goal						
First row receptors		First row receptors receiving 7 or reduction	BA or more	% of benefited first row receptors with a 7 dBA reduction	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row receptors?	Yes
18		13		72%	receptors?	
Cost-effectiveness						
		Noise Barrier Length (feet)		1,505		
		Noise Barrier Height (feet)		10-16		
	TNM A	rea of Proposed Barrier, Sqft.		21,838	Is the cost per benefited receptor less than or equal to \$30,000 per	No
	Estimated Noise	e Barrier Cost (\$30.00 x Sqft.)		\$655,140	benefited receptor receiving a minimum reduction of 5 dBA?	OFI
	Number of Benefited Receptors/Dwelling Units					
	Number of Benefited Receptors/Dwelling Units 20 Cost per receptor \$32,757					

NB4 - North of northbound I-65 along the edge of shoulder from the College Ave overpass to the Central Avenue overpass. This noise barrier examines abatement of future noise levels at residential receivers R143 through R178, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R143	В	66	1	2	65.2	62.8	-2.4	60.0	2.8	No	No	No	No
R144	В	66	1	2	65.0	62.9	-2.1	59.7	3.2	No	No	No	No
R145	В	66	1	2	64.5	62.6	-1.9	59.4	3.2	No	No	No	No
R146	В	66	1	2	64.0	62.4	-1.6	59.0	3.4	No	No	No	No
R147	В	66	1	2	67.2	63.9	-3.3	60.1	3.8	No	No	No	No
R148	В	66	1	2	68.0	63.9	-4.1	59.8	4.1	No	No	No	No
R149	В	66	1	2	69.0	63.9	-5.1	59.6	4.3	No	No	No	No
R150	В	66	1	2	68.5	65.1	-3.4	58.8	6.3	No	Yes	No	No
R151	В	66	1	2	62.4	61.0	-1.4	57.7	3.3	No	No	No	No
R152	В	66	1	2	61.4	60.9	-0.5	57.2	3.7	No	No	No	No
R153	В	66	1	1	70.6	65.5	-5.1	59.0	6.5	No	Yes	No	No
R154	В	66	1	1	70.0	66.4	-3.6	58.9	7.5	Yes	Yes	Yes	Yes
R155	В	66	1	2	68.6	66.0	-2.6	58.4	7.6	Yes	Yes	Yes	No
R156	В	66	2	2	67.2	65.3	-1.9	58.3	7.0	No	Yes	No	No
R156-2	В	66	2	2	68.7	66.0	-2.7	58.3	7.7	Yes	Yes	Yes	No
R157	В	66	2	2	65.7	64.3	-1.4	55.3	9.0	No	Yes	No	No
R157-2	В	66	2	2	66.6	64.6	-2.0	55.2	9.4	No	Yes	No	No
R158	B	66	2	2	57.9	56.9	-1.0	53.6	3.3	No	No	No	No
R159 R160	B	66	2	2	63.5	<u>63.0</u> 64.1	-0.5	56.2	6.8	No	Yes	No	No
R161 (HP3)	B C	66	2	2	65.1	66.7	-1.0	56.4	7.7	No	Yes	No	No
R161 (HP3) R162	C	66 66	1	2	70.4 57.9	56.6	-3.7 -1.3	59.0 51.8	4.8	Yes No	Yes No	Yes No	Yes No
R162-1	D	66	1	1	49.0	45.9	-1.3	38.4	7.5	No	Yes	No	Yes
R162-1	B	66	3	2	63.4	60.8	-3.1	54.5	6.3	No	Yes	No	No
R166	B	66	3	2	61.0	61.5	0.5	54.9	6.6	No	Yes	No	No
R164	B	66	3	2	61.6	62.6	1.0	55.9	6.7	No	Yes	No	No
R167	B	66	3	2	63.6	63.2	-0.4	55.7	7.5	No	Yes	No	No
R168	B	66	2	2	64.4	63.6	-0.4	56.1	7.5	No	Yes	No	No
R169	B	66	2	2	66.5	65.2	-1.3	58.2	7.0	No	Yes	No	No
R170	B	66	1	1	68.6	64.9	-3.7	58.7	6.2	No	Yes	No	No
R171	B	66	1	1	69.2	64.3	-4.9	60.3	4.0	No	No	No	No
R172	B	66	2	2	66.4	64.5	-1.9	58.2	6.3	No	Yes	No	No
R172	B	66	2	2	65.8	64.5	-1.3	57.5	7.0	No	Yes	No	No
R174	B	66	2	2	64.7	63.9	-0.8	56.7	7.2	No	Yes	No	No
R175	B	66	2	2	64.3	63.5	-0.8	55.9	7.6	No	Yes	No	No
R176	B	66	1	2	63.6	63.2	-0.4	55.8	7.4	No	Yes	No	No
R177	B	66	1	2	61.0	61.3	0.3	54.5	6.8	No	Yes	No	No
R178	B	66	1	2	60.4	60.7	0.3	54.2	6.5	No	Yes	No	No
R179	B	66	2	2	60.2	60.0	-0.2	55.8	4.2	No	No	No	No
R180	В	66	2	2	61.5	61.3	-0.2	56.7	4.6	No	No	No	No
R181	В	66	2	2	62.9	62.6	-0.3	57.6	5.0	No	Yes	No	No
R182	В	66	2	2	64.2	63.5	-0.7	58.6	4.9	No	No	No	No
R183	В	66	2	2	66.3	64.5	-1.8	59.7	4.8	No	No	No	No
R184	В	66	2	1	68.8	64.5	-4.3	60.5	4.0	No	No	No	No
R185	В	66	2	1	68.9	64.5	-4.4	60.6	3.9	No	No	No	No
R186	В	66	2	1	69.0	64.5	-4.5	60.8	3.7	No	No	No	No
R187	В	66	2	1	68.3	64.6	-3.7	61.4	3.2	No	No	No	No

R188	В	66	2	2	66.2	64.8	-1.4	59.6	5.2	No	Yes	No	No
R189	В	66	2	2	64.5	64.0	-0.5	58.4	5.6	No	Yes	No	No
R190	В	66	2	2	63.6	63.5	-0.1	57.8	5.7	No	Yes	No	No
R191	В	66	1	2	63.4	63.1	-0.3	57.7	5.4	No	Yes	No	No
R191-2	В	66	1	2	65.9	64.5	-1.4	59.8	4.7	No	No	No	No
R192	В	66	1	2	63.3	63.0	-0.3	57.6	5.4	No	Yes	No	No
R192-2	В	66	1	2	65.7	64.4	-1.3	59.7	4.7	No	No	No	No
R193	В	66	2	2	61.9	61.8	-0.1	56.3	5.5	No	Yes	No	No
R200	В	66	1	2	59.7	59.2	-0.5	55.9	3.3	No	No	No	No
R201	В	66	1	2	59.5	59.0	-0.5	56.6	2.4	No	No	No	No
R202	В	66	1	2	59.4	59.1	-0.3	57.1	2.0	No	No	No	No
R203	В	66	1	2	59.4	59.0	-0.4	57.5	1.5	No	No	No	No
R204	В	66	1	2	60.3	59.0	-1.3	57.9	1.1	No	No	No	No
R205	С	66	1	1	54.5	52.4	-2.1	51.8	0.6	No	No	No	No
R206 (HP4)	С	66	1	1	65.1	63.6	-1.5	63.6	0.0	No	No	No	No
R207	В	66	1	1	67.3	64.8	-2.5	64.0	0.8	No	No	No	No
R208	В	66	1	1	67.3	64.9	-2.4	63.8	1.1	No	No	No	No
R205-1	D	51	1	1	42.4	44.8	2.4	44.4	0.4	No	No	No	No
						>65.9 - Noise levels that approach or exceed the NAC.							
Feasibility													
	umber of impacted receptors receiving a standard dependence of impacted receptors receiving a standard dependence of the standard				ng a 5 % of impacted receptors receiving a 5 dBA reduction			oise barrier desi (>50%)	gn achieve a 5 o of impacted rec		at a majority	Ye	es
5			5			100%							
Reasonability													
Design Goal													
First row re	ecentors		First row receptors receiving 7	dBA or more		enefited first row receptors	Design Goal	Is there a 7 dB	A reduction for P	50% of the ben	ofited first row		
TIISTIOWIE	reduction				wi	th a 7 dBA reduction	Design Goal.	IS there a r ub	receptors?			Ye	es
5		3				60%			1000010131				
Cost-effectiven													
			Noise Barrier Length (feet)		,	325							
			Noise Barrier Height (feet)			2-20							
	TNM Area of Proposed Barrier, Sqft.					Is the cost per benefited receptor less than or equal to \$30,000 per benefited					es		
1	Estimated Noise Barrier Cost (\$30.00 x Sqft.)			\$1,273,470		re	eceptor receiving	a minimum rec	duction of 5 dBA	٨?			
					-								
			fited Receptors/Dwelling Units Cost per receptor			58 1,956							

NB5 - SB I-65 immediately behind the concrete safety barrier from the Central Ave overpass to the Alabama Street overpass. This noise barrier examines abatement of future noise levels at residential receivers R225 through R398, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R228	В	66	1	2	66.4	64.3	-2.1	63.5	0.8	No	No	No	No
R229	В	66	1	2	58.8	57.0	-1.8	54.7	2.3	No	No	No	No
R300	В	66	2	2	62.1	59.7	-2.4	58.2	1.5	No	No	No	No
R301	В	66	1	2	66.8	64.2	-2.6	63.3	0.9	No	No	No	No
R302	В	66	2	2	66.9	63.6	-3.3	62.4	1.2	No	No	No	No
R303	В	66	2	2	66.0	61.8	-4.2	60.8	1.0	No	No	No	No
R306	В	66	1	2	61.4	60.3	-1.1	58.8	1.5	No	No	No	No
R307	В	66	2	2	62.6	61.4	-1.2	60.6	0.8	No	No	No	No
R308	В	66	2	2	62.7	61.5	-1.2	60.7	0.8	No	No	No	No
R309	В	66	1	2	62.6	61.7	-0.9	60.7	1.0	No	No	No	No
R310	В	66	2	2	62.6	61.5	-1.1	60.4	1.1	No	No	No	No
R311	В	66	2	2	62.3	61.0	-1.3	59.3	1.7	No	No	No	No
R312	В	66	1	2	60.2	59.4	-0.8	57.8	1.6	No	No	No	No
R313	В	66	2	2	59.6	59.0	-0.6	57.5	1.5	No	No	No	No
R314	E	71	0	2	58.3	57.9	-0.4	56.7	1.2	No	No	No	No
R315	В	66	0	2	58.2	58.0	-0.2	56.3	1.7	No	No	No	No
R320	В	66	1	2	61.8	60.1	-1.7	58.2	1.9	No	No	No	No
R321	В	66	4	2	60.3	59.4	-0.9	56.8	2.6	No	No	No	No
R322	В	66	2	1	67.7	65.0	-2.7	57.1	7.9	No	Yes	No	Yes
R323	B	66	3	1	67.1	64.4	-2.7	55.7	8.7	No	Yes	No	Yes
R324	B	66	3	1	68.4	65.0	-3.4	56.2	8.8	No	Yes	No	Yes
R325	B	66	2	1	67.8	64.7	-3.1	56.8	7.9	No	Yes	No	Yes
R326	E	71	0	2	70.1	68.4	-1.7	60.5	7.9	Yes	Yes	Yes	No
R327	B	66	5	2	64.9	62.9	-2.0	56.1	6.8	No	Yes	No	No
R328	B	66	2	2	62.6	61.0	-1.6	58.5	2.5	No	No	No	No
R329	B	66	1	2	62.5	60.0	-2.5	57.6	2.4	No	No	No	No
R330	B	66	1	2	62.7	59.9	-2.8	58.3	1.6	No	No	No	No
R331	B	66	2	2	62.8	60.8	-2.0	58.4	2.4	No	No	No	No
R332	B	66	2	2	60.8	59.9	-0.9	57.4	2.5	No	No	No	No
R333	B	66	4	2	62.6	61.8	-0.8	55.7	6.1	No	Yes	No	No
R334	B	66	1	2	63.2	61.9	-0.0	59.4	2.5	No	No	No	No
R335	B	66	2	2	62.6	61.0	-1.6	58.0	3.0	No	No	No	No
R336	B	66	2	2	62.6	61.5	-1.1	58.8	2.7	No	No	No	No
R337	B	66	8	2	60.2	59.6	-0.6	57.1	2.5	No	No	No	No
R338	B	66	2	2	62.1	61.3	-0.8	58.6	2.7	No	No	No	No
R339	B	66	1	2	61.5	60.7	-0.8	57.9	2.8	No	No	No	No
R340	B	66	2	2	61.3	60.5	-0.8	57.8	2.8	No	No	No	No
R341	B	66	2	2	61.1	60.5	-0.6	57.6	2.9	No	No	No	No
R342	B	66	4	2	56.6	56.8	0.2	53.4	3.4	No	No	No	No
R343	B	66	7	2	60.8	60.5	-0.3	56.5	4.0	No	No	No	No
R344 (HP9)	E	71	0	2	59.9	59.5	-0.3	55.6	4.0	No	No	No	No
R350	B	66	5	1	70.5	65.8	-0.4	59.3	6.5	No	Yes	No	No
R350	В	66	5	2	64.5	64.2	-4.7	59.3	8.6	No	Yes	No	No
R351	В	66	2	2	65.4	64.8	-0.3	55.6	7.4	No	Yes	No	No
R352 R353	B	66	1	2	64.9	63.9	-0.6	57.4	6.9	No	Yes	No	No
R353 R354	B	66	2	2	65.1	63.0	-1.0	57.0	5.8				NO
R354 R355	B	66	1	2	64.9	62.8	-2.1	57.2	5.8 6.1	No No	Yes Yes	No No	NO NO
R355 R357	B	66	1	2	63.8	62.8	-2.1	56.7	5.5		Yes	NO	NO
	B		2	2						No			
R358	Ď	66	Ζ	2	61.9	61.2	-0.7	51.8	9.4	No	Yes	No	No

			-	-									
R359	В	66	2	2	61.0	60.2	-0.8	51.4	8.8	No	Yes	No	No
R360	В	66	2	2	57.8	57.3	-0.5	51.0 52.3	6.3 7.1	No No	Yes Yes	No	No
R361	В	66	3	2	59.6	59.4	-0.2	No	No				
R362	В	66	3	2	59.5	59.0	-0.5	51.7 51.3	7.3 6.1	No No	Yes Yes	No	No
R363	В	66	3	2	57.0	57.4	0.4	No	No				
R364	В	66	3	2	58.6	57.9	-0.7	51.5	6.4	No	Yes	No	No
R365	В	66	3	2	57.3	56.4	-0.9	51.8	4.6	No	No	No	No
R366	В	66	2	2	58.0	57.9	-0.1	51.7	6.2	No	Yes	No	No
R367	B	66 66	2	2	58.5	58.6 57.5	0.1	52.0	6.6 6.1	No	Yes	No No	No
R368 R369	B	66		2	57.3	57.5	0.2	51.4 52.2	5.2	No No	Yes		No No
R369 R370	B	66	2	2	57.3 57.4	57.4	0.0	52.2	5.2	No	Yes Yes	No No	No
R370	B	66	2	2	57.4	57.3	-0.1 51.9 5.4 No Yes						No
R371	B	66	2	1	70.1	63.1	-0.1 51.9 5.4 No Yes						No
R372	B	66	2	1	70.1	63.6	-7.0 57.8 5.3 No Yes -6.4 57.5 6.1 No Yes						No
R374	B	66	2	1	70.0	64.7	-5.3 57.5 7.2 No Yes						Yes
R374	B	66	2	1	69.7	64.9	-4.8 57.9 7.0 No Yes						Yes
R376	B	66	4	2	70.2	66.6							No
R370	B	66	4 4	2	71.5	66.7	-3.6 59.0 7.6 Yes Yes -4.8 58.7 8.0 Yes Yes						No
R378	B	66	4 4	2	71.5	66.7	-4.8 58.7 8.0 Yes Yes -4.8 58.7 8.0 Yes Yes						No
R379	B	66	4 4	2	71.5	66.8	-4.8	58.7	Yes	Yes Yes	No		
R380	B	66	6	2	59.4	58.6	-4.8	53.9	8.1 4.7	Yes No	No	No	No
R381	B	66	6	2	60.8	59.3	-0.8	55.0	No	No	No		
R382	B	66	4	2	60.1	58.6	-1.5	54.7	No	No	No		
R383	B	66	4	2	56.5	54.9	-1.6	50.0	3.9 4.9	No No	No	No	No
R384	B	66	4	2	54.0	52.8	-1.2	49.3	No	No	No		
R385	B	66	4	2	61.5	59.9	-1.6	53.7	3.5 6.2	No No	Yes	No	No
R386	B	66	5	2	59.6	58.1	-1.5	51.6	6.5	No	Yes	No	No
R387	B	66	2	2	54.6	54.9	0.3	52.9	2.0	No	No	No	No
R388	B	66	2	2	60.5	59.1	-1.4	56.4	2.7	No	No	No	No
R389	B	66	5	2	56.9	55.5	-1.4	48.6	6.9	No	Yes	No	No
R390	E	71	1	2	69.2	65.0	-4.2	58.7	6.3	No	Yes	No	No
R391	B	66	1	2	64.5	62.4	-2.1	57.3	5.1	No	Yes	No	No
R392	D	51	1	2	39.2	37.0	-2.2	36.8	0.2	No	No	No	No
R393	D	51	1	2	32.6	32.3	-0.3	34.8	-2.5	No	No	No	No
R394	E	71	1	2	66.3	64.2	-2.1	63.1	1.1	No	No	No	No
R395	B	66	6	2	67.1	64.7	-2.4	64.4	0.3	No	No	No	No
R397	B	66	1	2	66.7	63.4	-3.3	58.8	4.6	No	No	No	No
R397-2	B	66	2	2	68.0	64.5	-3.5	57.9	6.6	No	Yes	No	No
R396	B	66	1	2	58.1	56.8	-1.3	55.8	1.0	No	No	No	No
R399	В	66	3	2	52.7	52.9	0.2	49.9	3.0	No	No	No	No
R388-2	В	66	2	2	63.8	61.8	-2.0	58.7	3.1	No	No	No	No
R387-2	В	66	2	2	59.1	59.5	0.4	56.0	3.5	No	No	No	No
R398	E	71	1	2	59.8	58.9	-0.9	58.5	0.4	No	No	No	No
			-		·	Noise levels that approach or exceed the NAC.					-		-
Feasibility													
Number of im	npacted receptors		Number of impacted receptors dBA reduction	s receiving a 5	% of imp	acted receptors receiving a 5 dBA reduction	Does the no	oise barrier desi (>50%)	ign achieve a 5 of impacted rec		at a majority	Y	es
Deservebillt	16		16		I	100%							
Reasonability													
Design Goal		r			0/ - 4 '	Et al East annual of	recentors					-	
First rov	w receptors		First row receptors receiving reduction	reduction with a 7 dBA reduction				Is there a 7 dB		50% of the ben	efited first row	Y	es
	23	14 reduction with a / dBA reduction 14 61%				61%	receptors?					l	

23		14	61%	receptors?	
Cost-effectiveness					
		Noise Barrier Length (feet)	2,001		
		Noise Barrier Height (feet)	12-20		
	TNM A	Area of Proposed Barrier, Sqft.	33,562	Is the cost per benefited receptor less than or equal to \$25,000 per benefited	Yes
	Estimated Nois	e Barrier Cost (\$30.00 x Sqft.)	\$1,006,860	receptor receiving a minimum reduction of 5 dBA?	res
	Number of Bene	fited Receptors/Dwelling Units	104		
		Cost per receptor	\$9,681		

NB6 - SB I-65 from approximately Pennsylvania Street to approximately 200 feet east of Alabama along the edge of shoulder. This noise barrier examines abatement of future noise levels at residential receivers R220 through R342, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category		Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R222 (HP6)	В	66	4	1	69.3	66.5	-2.8	61.5	5.0	Yes	Yes	Yes	No
R224 (HP7)	В	66	1	2	66.3	63.8	-2.5	59.6	4.2	No	No	No	No
R225	В	66	1	1	70.0	68.1	-1.9	60.9	7.2	Yes	Yes	Yes	Yes
R226	В	66	1	1	70.7	68.2	-2.5	60.2	8.0	Yes	Yes	Yes	Yes
R227	В	66	2	1	71.7	69.3	-2.4	61.8	7.5	Yes	Yes	Yes	Yes
R228	В	66	1	2	66.4	64.3	-2.1	58.2	6.1	No	Yes	No	No
R229	В	66	1	2	58.8	56.8	-2.0	55.6	1.2	No	No	No	No
R300	В	66	2	2	62.1	59.6	-2.5	57.4	2.2	No	No	No	No
R301	В	66	1	2	66.8	64.3	-2.5	59.2	5.1	No	Yes	No	No
R302	В	66	2	2	66.9	63.7	-3.2	59.5	4.2	No	No	No	No
R303	В	66	2	2	66.0	61.8	-4.2	57.5	4.3	No	No	No	No
R306	В	66	1	2	61.4	60.4	-1.0	57.1	3.3	No	No	No	No
R307	В	66	2	2	62.6	61.5	-1.1	57.0	4.5	No	No	No	No
R308	В	66	2	2	62.7	61.5	-1.2	57.5	4.0	No	No	No	No
R309	В	66	1	2	62.6	61.7	-0.9	58.1	3.6	No	No	No	No
R310	В	66	2	2	62.6	61.6	-1.0	58.4	3.2	No	No	No	No
R311	В	66	2	2	62.3	61.0	-1.3	58.5	2.5	No	No	No	No
R312	В	66	1	2	60.2	59.3	-0.9	56.7	2.6	No	No	No	No
R313	В	66	2	2	59.6	58.9	-0.7	56.3	2.6	No	No	No	No
R320	В	66	1	2	61.8	60.1	-1.7	57.3	2.8	No	No	No	No
R321	В	66	4	2	60.3	59.4	-0.9	58.4	1.0	No	No	No	No
R328	В	66	2	2	62.6	61.0	-1.6	59.7	1.3	No	No	No	No
R329	В	66	1	2	62.5	60.0	-2.5	58.2	1.8	No	No	No	No
R330	В	66	1	2	62.7	59.9	-2.8	58.6	1.3	No	No	No	No
R331	В	66	2	2	62.8	60.8	-2.0	59.3	1.5	No	No	No	No
R332	В	66	2	2	60.8	60.0	-0.8	58.1	1.9	No	No	No	No
R334	В	66	1	2	63.2	61.9	-1.3	60.0	1.9	No	No	No	No
R335	В	66	2	2	62.6	61.0	-1.6	59.4	1.6	No	No	No	No
R336	В	66	2	2	62.6	61.4	-1.2	59.6	1.8	No	No	No	No
R337	В	66	8	2	60.2	59.5	-0.7	57.7	1.8	No	No	No	No
R338	В	66	2	2	62.1	61.2	-0.9	59.3	1.9	No	No	No	No
R339	В	66	1	2	61.5	60.6	-0.9	58.8	1.8	No	No	No	No
R340	В	66	2	2	61.3	60.5	-0.8	58.7	1.8	No	No	No	No
R341	В	66	2	2	61.1	60.5	-0.6	58.7	1.8	No	No	No	No
R342	В	66	4	2	56.6	56.6	0.0	56.3	0.3	No	No	No	No
						Noise levels that approach or exceed the NAC.							

Feasibility				
Number of impacted receptors	Number of impacted receptors receiving a 5 dBA reduction	% of impacted receptors receiving a 5 dBA reduction	Does the noise barrier design achieve a 5 dBA reduction at a majority (>50%) of impacted receptors?	Yes
8	8	100%		

Reasonability						
Design Goal						
First row receptors		First row receptors receiv	ing 7 dBA or	% of benefited first row receptors	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row	
Flist tow receptors		more reductio	n	with a 7 dBA reduction	receptors?	Yes
8		4		50%	receptors?	
Cost-effectiveness						
	N	oise Barrier Length (feet)		1,804		
	N	oise Barrier Height (feet)		10-16		
	TNM Area c	of Proposed Barrier, Sqft.		24,370	Is the cost per benefited receptor less than or equal to \$30,000 per benefited	No
E	stimated Noise Bar	rier Cost (\$30.00 x Sqft.)		\$731,100	receptor receiving a minimum reduction of 5 dBA?	NO
Nur	mber of Benefited F	Receptors/Dwelling Units		10		
		Cost per receptor		\$73,110		

NB7 - SB I-65 immediately behind the concrete safety barrier. The first segment of the barrier extends from the 10th Street overpass to the offramp to North Street. A second segment of barrier extends from North Street to the Ohio Street offramp. This noise barrier examines abatement of future noise levels at residential receivers R400 through R455, (see Appendix F).

Feasibility Criteria

Achieve a 5 dBA reduction at a majority (>50%) of impacted receptors

Reasonability Criteria

Active Receivers	Activity Category	Criteria, Leq (h)	Dwelling Units/Receptors	Row	Existing	Future w/o Barrier	Increase (Future w/o Barrier - Existing)	Future w/ Barrier	Noise Barrier Reduction	Approach or Exceed NAC (Impacted)	Benefited Receptor	Impacted, and 5 dBA reduction	Design Goal: 7 dBA reduction and first row
R400	В	66	1	1	69.9	69.5	-0.4	62.9	6.6	Yes	Yes	Yes	No
R401	В	66	1	1	70.0	69.4	-0.6	62.6	6.8	Yes	Yes	Yes	No
R402	В	66	1	1	69.4	69.4	0.0	61.9	7.5	Yes	Yes	Yes	Yes
R403	В	66	6	1	69.6	69.6	0.0	58.7	10.9	Yes	Yes	Yes	Yes
R403-2	В	66	6	1	68.9	71.5	2.6	59.3	12.2	Yes	Yes	Yes	Yes
R403-3	В	66	6	1	72.5	72.0	-0.5	60.6	11.4	Yes	Yes	Yes	Yes
R404	В	66	6	1	67.5	67.9	0.4	58.5	9.4	Yes	Yes	Yes	Yes
R404-2	В	66	6	1	68.9	69.2	0.3	59.1	10.1	Yes	Yes	Yes	Yes
R404-3	В	66	6	1	70.1	70.0	-0.1	60.0	10.0	Yes	Yes	Yes	Yes
R405	В	66	6	2	59.6	63.3	3.7	59.1	4.2	No	No	No	No
R405-2	В	66	6	2	62.3	64.9	2.6	60.1	4.8	No	No	No	No
R405-3	В	66	6	2	64.9	65.4	0.5	61.0	4.4	No	No	No	No
R406	В	66	6	2	60.2	61.8	1.6	58.4	3.4	No	No	No	No
R406-2	В	66	6	2	61.8	63.0	1.2	59.1	3.9	No	No	No	No
R406-3	В	66	6	2	64.2	63.9	-0.3	60.1	3.8	No	No	No	No
R407	E	71	1	2	60.0	61.6	1.6	58.4	3.2	No	No	No	No
R408	В	66	4	2	60.2	61.0	0.8	56.0	5.0	No	Yes	No	No
R409	В	66	1	2	60.0	60.9	0.9	55.9	5.0	No	Yes	No	No
R410-1	В	66	4	2	62.3	64.3	2.0	57.6	6.7	No	Yes	No	No
R410-2	В	66	4	2	66.3	67.3	1.0	59.2	8.1	Yes	Yes	Yes	No
R410-3	В	66	4	2	67.4	68.3	0.9	60.3	8.0	Yes	Yes	Yes	No
R410-4	В	66	4	2	68.3	69.0	0.7	62.1	6.9	Yes	Yes	Yes	No
R411-1	В	66	4	2	63.6	65.3	1.7	57.1	8.2	No	Yes	No	No
R411-2	В	66	4	2	66.4	67.4	1.0	59.2	8.2	Yes	Yes	Yes	No
R411-3	В	66	4	2	67.6	68.6	1.0	60.6	8.0	Yes	Yes	Yes	No
R411-4	В	66	4	2	68.7	69.5	0.8	62.6	6.9	Yes	Yes	Yes	No
R412-1	В	66	4	2	64.6	65.9	1.3	57.8	8.1	No	Yes	No	No
R412-2	В	66	4	2	66.5	67.7	1.2	59.6	8.1	Yes	Yes	Yes	No
R412-3	В	66	4	2	67.9	68.9	1.0	61.1	7.8	Yes	Yes	Yes	No
R412-4	В	66	4	2	69.1	70.0	0.9	63.4	6.6	Yes	Yes	Yes	No
R413-1	В	66	4	2	65.2	66.1	0.9	58.2	7.9	Yes	Yes	Yes	No
R413-2	В	66	4	2	66.6	68.0	1.4	60.1	7.9	Yes	Yes	Yes	No
R413-3	В	66	4	2	68.2	69.3	1.1	62.0	7.3	Yes	Yes	Yes	No
R413-4	В	66	4	2	69.5	70.4	0.9	64.6	5.8	Yes	Yes	Yes	No
R414-1	В	66	4	2	50.5	51.6	1.1	50.5	1.1	No	No	No	No
R414-2	В	66	4	2	50.8	50.9	0.1	49.2	1.7	No	No	No	No
R414-3	В	66	4	2	51.3	51.2	-0.1	49.4	1.8	No	No	No	No
R414-4	В	66	4	2	54.6	55.0	0.4	52.9	2.1	No	No	No	No
R415-1	В	66	4	2	46.8	48.1	1.3	45.9	2.2	No	No	No	No
R415-2	В	66	4	2	47.8	48.7	0.9	46.3	2.4	No	No	No	No
R415-3	В	66	4	2	49.5	50.2	0.7	47.3	2.9	No	No	No	No
R415-4	В	66	4	2	53.0	53.7	0.7	50.3	3.4	No	No	No	No
R416-1	В	66	4	2	48.0	49.0	1.0	46.2	2.8	No	No	No	No

R416-2	В	66	4	2	50.0	50.8	0.8	47.6	3.2	No	No	No	No
R416-3	B	66	4	2	51.2	51.8	0.6	48.5	3.3	No	No	No	No
R416-4	B	66	4	2	55.5	56.0	0.5	52.8	3.2	No	No	No	No
R417-1	B	66	4	2	46.7	48.5	1.8	45.7	2.8	No	No	No	No
R417-2	В	66	4	2	48.6	49.5	0.9	46.8	2.7	No	No	No	No
R417-3	В	66	4	2	51.1	52.0	0.9	48.5	3.5	No	No	No	No
R417-4	В	66	4	2	55.5	56.1	0.6	53.4	2.7	No	No	No	No
R418	В	66	1	2	52.2	53.0	0.8	51.2	1.8	No	No	No	No
R419	В	66	2	2	57.5	58.8	1.3	53.9	4.9	No	No	No	No
R419-2	В	66	2	2	64.2	65.8	1.6	58.4	7.4	No	Yes	No	No
R419-3	В	66	2	2	67.2	68.5	1.3	63.5	5.0	Yes	Yes	Yes	No
R419-4	В	66	2	2	68.6	69.8	1.2	64.4	5.4	Yes	Yes	Yes	No
R419-5	В	66	4	2	46.6	47.1	0.5	45.9	1.2	No	No	No	No
R419-6	В	66	4	2	53.8	54.6	0.8	51.2	3.4	No	No	No	No
R420	В	66	1	2	58.5	59.4	0.9	54.1	5.3	No	Yes	No	No
R421-1	В	66	2	2	59.9	60.5	0.6	54.0	6.5	No	Yes	No	No
R421-2	В	66	2	2	61.9	62.6	0.7	57.4	5.2	No	Yes	No	No
R421-3	В	66	2	2	66.8	67.3	0.5	61.5	5.8	Yes	Yes	Yes	No
R421-4	В	66	2	2	68.5	69.0	0.5	64.0	5.0	Yes	Yes	Yes	No
R421-5	В	66	2	2	69.1	69.5	0.4	64.8	4.7	Yes	No	No	No
R421-6	В	66	2	2	69.4	69.8	0.4	65.6	4.2	Yes	No	No	No
R422	В	66	1	2	57.2	57.8	0.6	52.8	5.0	No	Yes	No	No
R423	В	66	2	2	60.7	61.8	1.1	54.7	7.1	No	Yes	No	No
R424	В	66	2	1	67.0	66.7	-0.3	58.6	8.1	Yes	Yes	Yes	Yes
R425	В	66	3	1	67.3	67.2	-0.1	59.1	8.1	Yes	Yes	Yes	Yes
R426	В	66	3	2	64.3	64.5	0.2	57.3	7.2	No	Yes	No	No
R427	В	66	1	2	62.5	63.2	0.7	56.1	7.1	No	Yes	No	No
R428	В	66	1	2	62.6	63.3	0.7	56.3	7.0	No	Yes	No	No
R429	В	66	1	2	62.7	63.4	0.7	56.3	7.1	No	Yes	No	No
R430	В	66	1	2	62.8	63.5	0.7	56.5	7.0	No	Yes	No	No
R431	В	66	1	2	62.7	63.2	0.5	56.4	6.8	No	Yes	No	No
R432	В	66	1	2	62.9	63.5	0.6	56.5	7.0	No	Yes	No	No
R433	B	66	1	2	62.8	63.3	0.5	56.4	6.9	No No	Yes	No No	No No
R434	В	66		2	61.6	62.0	-	55.1	6.9		Yes		
R435 R436	B	66 66	2	2	61.9 62.1	62.0 62.1	0.1	55.3 55.5	6.7	No	Yes	No	No
R436 R437	B	66	2	2	62.1	62.0	-0.1	55.7	6.6 6.3	No No	Yes Yes	No No	No No
R437 R440	B	66	2	1	62.1	62.0 66.6	-0.1	55.7	6.9	Yes	Yes	Yes	No
R440 R441	В	66	8	2	64.1	64.4	0.3	59.7	6.6	No	Yes	No	No
R441 R442	B	66	<u> </u>	1	66.5	66.1	-0.4	58.1	8.0	Yes	Yes	Yes	Yes
R442 R443	B	66	1	2	64.2	64.8	0.6	58.2	6.6	No	Yes	No	No
R443	B	66	1	2	65.3	64.9	-0.4	58.8	6.1	No	Yes	No	No
R444	B	66	2	2	59.6	59.2	-0.4	57.7	1.5	No	No	No	No
R446	B	66	3	2	58.8	58.7	-0.1	56.6	2.1	No	No	No	No
R447	C	66	1	2	59.3	59.3	0.0	57.6	1.7	No	No	No	No
R448	B	66	2	2	58.2	57.9	-0.3	56.1	1.8	No	No	No	No
R450	E	71	1	2	53.3	53.5	0.2	52.6	0.9	No	No	No	No
R451	E	71	1	2	58.2	58.5	0.2	55.7	2.8	No	No	No	No
R452	E	71	1	2	67.8	67.0	-0.8	60.0	7.0	Yes	Yes	Yes	No
R453	E	71	1	2	63.3	64.9	1.6	57.8	7.1	No	Yes	No	No
R454	E	71	1	1	65.8	66.4	0.6	57.3	9.1	Yes	Yes	Yes	Yes
R455	C	66	2	2	66.8	67.8	1.0	58.8	9.0	Yes	Yes	Yes	No
	-		, -			Noise levels that approach or exceed the NAC.							

Feasibility						
Number of impacted receptors		Number of impacted rec receiving a 5 dBA redu		% of impacted receptors receiving a 5 dBA reduction	Does the noise barrier design achieve a 5 dBA reduction at a majority (>50%) of impacted receptors?	Yes
115		111		97%		
Reasonability						
Design Goal						
First row receptors		First row receptors receivi or more reduction	0	% of benefited first row receptors with a 7 dBA reduction	Design Goal: Is there a 7 dBA reduction for 50% of the benefited first row	Yes
48		44		92%	receptors?	
Cost-effectiveness						
	Noise Ba	rrier Length (feet)		4,734		
	Noise Ba	arrier Height (feet)		14-20		
TNM	Area of Propo	osed Barrier, Sqft.		90,389	Is the cost per benefited receptor less than or equal to \$25,000 per	Yes
Estimated Noi	ise Barrier Co	st (\$30.00 x Sqft.)		\$2,711,670	benefited receptor receiving a minimum reduction of 5 dBA?	fes
Number of Ben	efited Recept	ors/Dwelling Units		166		
		Cost per receptor		\$16,335		

APPENDIX F: NOISE BARRIER DESIGN SUMMARY

North Split																
			1				NB	1								
	Analysis	Analysis2	Analysis3	Analysis4	Analysis5	Analysis6	Analysis7	Analysis8	Analysis9	Analysis10	Analysis11	Analysis12	Analysis13	Analysis14	Analysis15	Units
Average Wtd I.L. (benefited)	6.8	6.1	6.7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA						
Maximum I.L.	7.9	7	6.7	0	0	0	0	0	0	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Total Benefited	4	4	2	0	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	50%	50%	0%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%						
"Cost-Reasonable" ?	No	No	No	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!							
Surface Area	58,545	38,487	34,639	-	-	-	-	-	-	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	14,636	9,622	17,320	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben re						
Barrier Length	2,928	1,925	1,925	-	-	-	-	-	-	-	-	-	-	-	-	ft or m
Min Height	20	20	18	-	-	-	-	-	-	-	-	-	-	-	-	ft or m
Max Height	20	20	18	-	-	-	-	-	-	-	-	-	-	-	-	ft or m
Avg Height	20	20	18	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m						
Total Barrier Cost	1,756,350	1,154,610	1,039,170	-	-	-	-	-	-	-	-	-	-	-	-	\$
Cost/Ben Rec	439,088	288,653	519,585	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec						
Effectiveness/Cost Metric (E/C)	34.2	52.0	-	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!							
Acoustical Feasibility Goal (dBA)	E															

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

							North S	Split								
							NR)								
	Analysis1	Analysis2	Analysis3	Analysis4	Analysis5	Analysis	Analysis7	Analysis8	Analysis9	Analysis10	Analysis11	Analysis12	Analysis13		Analysis15	Units
Average Wtd I.L. (benefited)	9.5	6.4	7.2	7.3	7.9	6.6	6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	11.1	6.5	7.8	8.7	8.4	7.6	7	0	0	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	6	3	6	6	6	6	5	0	0	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Total Benefited	9	3	6	9	6	6	5	0	0	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	6	0	4	6	6	2	2	0	0	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	9	0	4	6	6	2	2	0	0	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	50%	100%	100%	100%	100%	83%	0%	0%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	100%	0%	67%	67%	100%	33%	40%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	No	No	No	No	No	No	No	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Surface Area	46,166	18,466	23,087	27,705	15,602	8,402	6,802	-	-	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	5,130	6,155	3,848	3,078	2,600	1,400	1,360	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	2,308	2,308	2,308	2,308	1,300	700	600	-	-	-	-	-	-	-	-	ft or m
Min Height	20	8	10	12	12	12	10	-	-	-	-	-	-	-	-	ft or m
Max Height	20	8	10	12	12	12	12	-	-	-	-	-	-	-	-	ft or m
Avg Height	20	8	10	12	12	12	11	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	1,384,980	553,980	692,610	831,150	468,060	252,060	204,060	-	-	-	-	-	-	-	-	\$
Cost/Ben Rec	153,887	184,660	115,435	92,350	78,010	42,010	40,812	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	32.5	-	28.9	54.1	64.1	39.7	40.8	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

							North S NB3	•								
	Analysis1	Analysis2	Analysis3	Analysis4	Analysis5	Analysis6	Analysis7		Analysis9	Analysis1	Analysis11	Analysis12	Analysis13	Analysis14	Analysis15	Units
Average Wtd I.L. (benefited)	9.5	9	7.7	7	7.4	7	7.3	7.4	6.6	6.5	6.4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	11.7	11	9.4	8.6	9.4	8.9	9.4	9.2	8.8	8.3	8.4	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	43	43	43	41	43	31	43	36	31	27	31	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	11	11	11	8	5	4	5	4	4	4	4	0	0	0	0	# of dwelling units
Total Benefited	54	54	54	49	48	35	48	40	35	31	35	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	43	43	32	27	21	13	21	20	13	9	9	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	48	47	36	31	25	17	25	24	17	13	13	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	100%	95%	100%	72%	100%	84%	72%	63%	72%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	89%	87%	67%	63%	52%	49%	52%	60%	49%	42%	37%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Surface Area	73,827	66,443	51,677	44,297	38,012	36,125	36,844	36,035	31,868	21,934	23,031	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	1,367	1,230	957	904	792	1,032	768	901	911	708		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	3,690	3,690	3,690	3,690	2,715	2,580	2,715	2,715	2,396	1,615	1,615	-	-	-	-	ft or m
Min Height	20	18	14	12	14	14	12	8	8	10	10	-	-	-	-	ft or m
Max Height	20	18	14	12	14	14	14	14	14	14	18	-	-	-	-	ft or m
Avg Height	20	18	14	12	14	14	14	13	13	14	14	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	2,214,810	1,993,290	1,550,310	1,328,910	1,140,360	1,083,750	1,105,320	1,081,050	956,040	658,020	690,930	-	-	-	-	\$
Cost/Ben Rec	41,015	36,913	28,709	27,121	23,758	30,964	23,028	27,026	27,315	21,226	· ·	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	17.0	18.9	18.1	16.2	14.3	6.8	14.8	12.0	7.7	6.9	7.4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

							North	•		_		_				
							NB3									
	Analysis1	Analysis2	Analysis3	Analysis4	Analysis5	Analysis6	Analysis7	Analysis8	Analysis9	Analysis1	Analysis11	Analysis12	Analysis13		Analysis15	Units
Average Wtd I.L. (benefited)	7.6	7.9	7.5	7.1	7.2	7	6.8	6.4	7.2	6.7	6.7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	8.9	8.9	8.8	8.4	7.9	8.4	7.6	7.3	7.8	7.3	7.6	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	17	17	17	17	17	17	17	17	17	17	17	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	12	14	12	12	6	12	3	4	5	4	3	0	0	0	0	# of dwelling units
Total Benefited	29	31	29	29	23	29	20	21	22	21	20	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	17	17	17	17	14	17	14	12	14	12	12	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	19	24	19	19	16	19	15	13	16	13	13	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	66%	77%	66%	66%	70%	66%	75%	62%	73%	62%	65%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	No	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!											
Surface Area	54,080	66,090	46,030	41,425	36,821	39,609	22,037	24,336	35,005	30,404	21,838	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	1,865	2,132	1,587	1,428	1,601	1,366	1,102	1,159	1,591	1,448	1,092	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	2,704	3,305	2,301	2,301	2,301	2,301	1,505	1,805	2,301	2,301	1,505	-	-	-	-	ft or m
Min Height	20	20	20	18	16	12	12	8	10	8	10	-	-	-	-	ft or m
Max Height	20	20	20	18	16	18	16	16	16	14	16	-	-	-	-	ft or m
Avg Height	20	20	20	18	16	17	15	14	15	13	15	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	1,622,400	1,982,700	1,380,900	1,242,750	1,104,630	1,188,270	661,110	730,080	1,050,150	912,120	655,140	-	-	-	-	\$
Cost/Ben Rec	55,945	63,958	47,617	42,853	48,027	40,975	33,056	34,766	47,734	43,434	32,757	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	31.5	27.6	37.1	41.2	30.3	43.1	44.0	35.8	30.4	28.7	38.0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

	North Split																
			F					NB	4								
	Analysis1	Analysis2	Analysis 3	Analysis4	Ar	alysis5	Analysis6	Analysis7	Analysis8	Analysis9	Analysis10	Analysis11	Analysis12	Analysis13	Analysis14	Analysis15	Units
Average Wtd I.L. (benefited)	6.2	6.6	6.7	6.8		6.3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	8.4	8.9	9	9.4		8.6	0	0	0	0	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	5	5	5	5		5	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	30	30	38	53		26	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Total Benefited	35	35	43	58		31	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	5	5	5	5		5	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	9	14	14	28		9	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	100%	100%		00%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	26%	40%	33%	48%		29%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	Yes	No	Yes	Yes		Yes	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Surface Area	34,704	38,559	39,56 <mark>3</mark>	42,449		28,961	-	-	-	-	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	992	1,102	92)	732		934	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben ree
Barrier Length	1,929	1,929	2,02	2,325		1,628	-	-	-	-	-	-	-	-	-	-	ft or m
Min Height	18	20	1	12		14	-	-	-	-	-	-	-	-	-	-	ft or m
Max Height	18	20	2)	20		20	-	-	-	-	-	-	-	-	-	-	ft or m
Avg Height	18	20	2)	18		18	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	1,041,120	1,156,770	1,186,89	1,273,470	8	68,830	-	-	-	-	-	-	-	-	-	-	\$
Cost/Ben Rec	29,746	33,051	27,60			28,027	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	201.7	181.5	217.	273.3		214.1	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Accuration Francipilar Cool (dDA)																	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

8/10/2019

							North	Split								
							NB	5								
	Analysis1	Analysis2	Analysis3	Analysis4	Analysis5	Analysis6	Analysis7	Analysis8			Analysis11		Analysis13		Analysis15	Units
Average Wtd I.L. (benefited)	6.4	6.9	6.9	6.7	6.4	6.4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	7.4	9.4	9.4	7.4	7.4	8.2	0	0	0	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	16	16	16	16	16	16	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	25	89	88	16	25	50	0	0	0	0	0	0	0	0	0	# of dwelling units
Total Benefited	41	105	104	32	41	66	0	0	0	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	16	16	16	12	16	16	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	20	43	43	16	20	24	0	0	0	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	100%	100%	100%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	49%	41%	41%	50%	49%	36%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	Yes	Yes	Yes	Yes	Yes	Yes	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Surface Area	19,914	30,002	33,562	20,439	19,914	22,880	-	-	-	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	486	286	323	639	486	347	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	1,159	2,001	2,001	1,059	1,159	1,344	-	-	-	-	-	-	-	-	-	ft or m
Min Height	16	12	12	18	16	16	-	-	-	-	-	-	-	-	-	ft or m
Max Height	20	20	20	20	20	20	-	-	-	-	-	-	-	-	-	ft or m
Avg Height	17	15	17	19	17	17	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	597,420	900,060	1,006,860	613,170	597,420	686,400	-	-	-	-	-	-	-	-	-	\$
Cost/Ben Rec	14,571	8,572		19,162	14,571	10,400	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	128.7	218.7	193.7	73.4	128.7	180.3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

9/16/2019

							North S	Split								
							NB	6		1						
	Analysis1	Analysis2	Analysis3	Analysis4	Analysis5	Analysis6	Analysis7	Analysis8	Analysis9	nalysis10	Analysis11	Analysis12	Analysis13	Analysis14	Analysis15	Units
Average Wtd I.L. (benefited)	6.5	6.3	7.3	6.1	6.7	6.5	6.5	6.3	6.1	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	9.3	8.7	8	6.9	7.6	6.7	7.3	7.3	8	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	8	8	4	4	4	3	3	4	8	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	6	4	2	1	2	0	2	2	2	0	0	0	0	0	0	# of dwelling units
Total Benefited	14	12	6	5	6	3	5	6	10	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	4	4	4	0	3	0	2	3	4	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	5	5	4	0	3	0	2	3	4	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	100%	100%	50%	50%	50%	38%	38%	50%	100%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	36%	42%	67%	0%	50%	0%	40%	50%	40%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	No	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!									
Surface Area	36,106	28,884	25,274	18,051	15,944	8,914	13,664	14,040	24,370	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	2,579	2,407	4,212	3,610	2,657	2,971	2,733	2,340	· · · · ·	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	1,804	1,804	1,804	1,804	1,138	636	1,138	1,138	1,804	-	-	-	-	-	-	ft or m
Min Height	20	16	14	10	14	14	12	10	10	-	-	-	-	-	-	ft or m
Max Height	20	16	14	10	14	14	12	14	16	-	-	-	-	-	-	ft or m
Avg Height	20	16	14	10	14	14	12	12		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	1,083,180	866,520	758,220	541,530	478,320	267,420	409,920	421,200	731,100	-	-	-	-	-	-	\$
Cost/Ben Rec	77,370	72,210	126,370	108,306	79,720	89,140	81,984	70,200	· · ·	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	24.2	26.0	14.8	-	17.6	-	11.4	20.0	25.6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

8/13/2019

							North	Split								
						1	NB	7								
	Analysis1	Analysis2	Analysis3	Analysis	Analysis5	Analysis6	Analysis7	Analysis8		Analysis10	Analysis11	Analysis12	Analysis13		Analysis15	Units
Average Wtd I.L. (benefited)	8	7.6	7.1	7.6	7.8	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	dBA
Maximum I.L.	12.2	11.6	10.5	11.6	12.2	0	0	0	0	0	0	0	0	0	0	dBA
Benefited/Impacted ≥ AFG	107	103	95	96	109	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited/Non Impact ≥ AFG	57	49	48	27	57	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Total Benefited	164	152	143	123	166	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Impacted Units ≥ NRDG	89	73	51	56	79	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Benefited Units ≥ NRDG	129	102	60	65	101	0	0	0	0	0	0	0	0	0	0	# of dwelling units
Percent of impacts ≥ AFG	95%	91%	84%	85%	96%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	%
Percent of benefits ≥ NRDG	79%	67%	42%	53%	61%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	%
"Cost-Reasonable" ?	Yes	Yes	Yes	Yes	Yes	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
Surface Area	94,631	85,172	75,700	65,783	90,389	-	-	-	-	-	-	-	-	-	-	sq-feet or sq-meters
Surface Area/Ben Rec	577	560	529	535		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	sq-ft or sq-m / ben rec
Barrier Length	4,734	4,734	4,734	3,657	4,734	-	-	-	-	-	-	-	-	-	-	ft or m
Min Height	20	18	16	18	14	-	-	-	-	-	-	-	-	-	-	ft or m
Max Height	20	18	16	18	20	-	-	-	-	-	-	-	-	-	-	ft or m
Avg Height	20	18	16	18	19	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	ft or m
Total Barrier Cost	2,838,930	2,555,160	2,271,000	1,973,490		-	-	-	-	-	-	-	-	-	-	\$
Cost/Ben Rec	17,311	16,810	15,881	16,045	16,335	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	\$ / ben rec
Effectiveness/Cost Metric (E/C)	12.1	10.2	7.5	8.2	11.4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	

Acoustical Feasibilty Goal (dBA)	5
Acoustical Feasibilty Goal (%)	50%
Noise Reduction Design Goal (dBA)	7
Noise Reduction Design Goal (%)	50%

8/13/2019

APPENDIX G: PUBLIC INVOLVEMENT MATERIALS

(utilized in Final Traffic Noise Analysis)